期刊文献+
共找到3,539篇文章
< 1 2 177 >
每页显示 20 50 100
Subchondral fatigue fracture of the femoral head in young military recruits:Potential risk factors
1
作者 Jun-Zheng Yang Peng Chen +1 位作者 Bai-Hao Chen Bin Zhao 《World Journal of Clinical Cases》 SCIE 2023年第28期6733-6743,共11页
BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor ... BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor for SFFFH.AIM To evaluate the intrinsic risk factors for SFFFH in young military recruits.METHODS X-ray and magnetic resonance imaging data were used for analysis.Acetabular anteversion of the superior acetabulum,acetabular anteversion of the center of the acetabulum(AVcen),anterior acetabular sector angle(AASA),posterior acetabular sector angle,superior acetabular sector angle,neck-shaft angle(NSA),inferior iliac angle(IIA),and ischiopubic angle were calculated.Then,logistic regression,receiver operating characteristic curve analysis,and independent samples t-test were performed to identify the risk factors for SFFFH.RESULTS Based on the results of logistic regression,age[odds ratio(OR):1.33;95%confidence interval(95%CI):1.12-1.65;P=0.0031]and treatment timing(OR:0.86;95%CI:0.75-0.96;P=0.015)could be considered as the indicators for SFFFH.AVcen(P=0.0334),AASA(P=0.0002),NSA(P=0.0007),and IIA(P=0.0316)were considered to have statistical significance.Further,AVcen(OR:1.41;95%CI:1.04-1.95)and AASA(OR:1.44;95%CI:1.21-1.77),especially AASA(area under curve:66.6%),should be paid much more attention due to the higher OR than other indicators.CONCLUSION We have for the first time unveiled that AASA and age could be key risk factors for SFFFH,which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH. 展开更多
关键词 Subchondral fatigue fracture of the femoral head Age Anterior acetabular sector angle Risk factors
下载PDF
Fracture Mechanics and Its Application in the Fatigue Behavior of Reinforced Welded Hand-Holes in Aluminum Light Poles
2
作者 Cameron R. Rusnak Craig C. Menzemer 《Open Journal of Civil Engineering》 2023年第4期677-694,共18页
Predicting fatigue life of a given specimen using analytical methods can sometimes be challenging. An approach worth considering for this prediction involves employing fracture mechanics. Fracture mechanics can comple... Predicting fatigue life of a given specimen using analytical methods can sometimes be challenging. An approach worth considering for this prediction involves employing fracture mechanics. Fracture mechanics can complement both laboratory experiments and finite element analysis (FEA) in estimating fatigue life of a given specimen, if relevant. In the case of aluminum light poles containing a welded hand-hole, the fatigue life has not yet been thoroughly predicted. The University of Akron has conducted a comprehensive fatigue study on aluminum light poles through various means, albeit without of predicting of said fatigue life of the specimens. AFGROW (Air Force Growth) can be used as a fracture mechanics software to predict fatigue life. ABAQUS was used (for FEA) in conjunction with the AFGROW analysis. The purpose of this study was to ultimately predict the life of the specimens tested in the lab and was achieved with various models including hollow tube and plate models. The plate model process was ultimately found to be the best method for this prediction, yielding results that mimicked the data from the laboratory. Further application for this form of fracture mechanics analysis is still yet to be determined, but for the sake of aluminum light poles, it is possible to predict the fatigue life and utilize said prediction in the field. 展开更多
关键词 fracture Mechanics Finite Element Analysis AFGROW fatigue Analysis Structural Analysis
下载PDF
Fatigue fracture mechanism of AZ31B magnesium alloy and its welded joint 被引量:3
3
作者 张红霞 王文先 +2 位作者 卫英慧 李晋永 王建玲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1225-1233,共9页
Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 6... Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 66.72, 39.00, 24.38 and 24.40 MPa, respectively. The crack propagation behavior of the alloy was analyzed by optical microscopy. The AZ31B magnesium alloy base metal has a smooth crack propagation macroscopic path. However, the microscopic path is twisted and some cracks have two forks, and the crack propagation is transgranular. The crack initiates in the weld toe and the crack propagates along the HAZ for the BJ and TJ; for the LJ crack initiates in the fillet weld leg. The fatigue fracture mechanisms were analyzed by SEM. The fatigue fracture surface consists of quasi-cleavage patterns or cleavage step and a brittle fracture occurs. Numerous secondary cracks are observed; some fatigue striations exist in butt joint and its size is about 5 μm. 展开更多
关键词 AZ31B magnesium alloy fatigue fracture crack propagation brittle fracture
下载PDF
Strength and fatigue fracture behavior of Al-Zn-Mg-Cu-Zr(-Sn) alloys 被引量:2
4
作者 陈璐 严安 +1 位作者 刘华山 李晓谦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2817-2825,共9页
The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were furt... The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn. 展开更多
关键词 AL-ZN-MG-CU-ZR SN STRENGTH fatigue fracture behavior MICROSTRUCTURE
下载PDF
Influence of masticatory fatigue on the fracture resistance of the pulpless teeth restored with quartz-fiber post-core and crown 被引量:10
5
作者 Er-Min Nie Xia-Yun Chen +2 位作者 Chun-Yuan Zhang Li-Li Qi Ying-He Huang 《International Journal of Oral Science》 SCIE CAS CSCD 2012年第4期218-220,共3页
To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from o... To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from orthodontic patients were divided into two groups of 22 each. The crowns of all teeth were removed and endodontically treated and then restored with quartz-fiber post-core and full crown. Twenty-two teeth in one group were selected randomly and circularly loaded at 45° to the long axis of the teeth of 127.4 N at a 6 Hz frequency, and the other group was not delivered to cyclic loading and considered as control. Subsequently, all teeth in two groups were continually loaded to fail at 45° to the long axis of the teeth at a crosshead speed of 1 mm.min-1. The mean destructive force values were (733.88±254.99) and (869.14±280.26) N for the experimental and the control group, respectively, and no statistically significant differences were found between two groups (P〉O.05). Bevel fracture and horizontal fracture in the neck of root were the major fracture mode of the specimens. Under the circumstances of this study, it seems that cyclic loading does not affect the fracture strength and pattern of the quartz-fiber post-core-crown complex. 展开更多
关键词 fracture resistance masticatory fatigue pulpless teeth quartz-fiber
下载PDF
Method to calculate fatigue fracture life of control fissure in perilous rock 被引量:5
6
作者 陈洪凯 唐红梅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第5期643-649,共7页
Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water... Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earth- quake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing. 展开更多
关键词 perilous rock control fissure fatigue fracture LIFE
下载PDF
Fatigue Crack Growth Rate of Ti-6Al-4V Considering the Effects of Fracture Toughness and Crack Closure 被引量:6
7
作者 ZHANG Junhong YANG Shuo LIN Jiewei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期409-415,共7页
Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is inve... Fatigue fracture is one of the main failure modes of Ti-6A1-4V alloy,fracture toughness and crack closure have strong effects on the fatigue crack growth(FCG)rate of Ti-6A1-4V alloy.The FCG rate of Ti-6A1-4V is investigated by using experimental and analytical methods.The effects of stress ratio,crack closure and fracture toughness on the FCG rate are studied and discussed.A modified prediction model of the FCG rate is proposed,and the relationship between the fracture toughness and the stress intensity factor(SIF)range is redefined by introducing a correcting coefficient.Notched plate fatigue tests(including the fracture toughness test and the FCG rate test)are conducted to investigate the influence of affecting factors on the FCG rate.Comparisons between the predicted results of the proposed model,the Paris model,the Walker model,the Sadananda model,and the experimental data show that the proposed model gives the best agreement with the test data particularly in the near-threshold region and the Paris region,and the corresponding calculated fatigue life is also accurate in the same regions.By considering the effects of fracture toughness and crack closure,the novel FCG rate prediction model not only improves the estimating accuracy,but also extends the adaptability of the FCG rate prediction model in engineering. 展开更多
关键词 TI-6AL-4V fatigue crack growth stress ratio crack closure fracture toughness life prediction
下载PDF
Fatigue properties analysis of cracked rock based on fracture evolution process 被引量:7
8
作者 张平 徐建光 李宁 《Journal of Central South University of Technology》 EI 2008年第1期95-99,共5页
Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens ma... Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force?displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fracture initiation, propagation and coalescence corresponds to the change of irreversible deformation. 展开更多
关键词 rock mechanics fatigue properties cyclic loading fracture evolution fatigue damage
下载PDF
High-cycle fatigue and fracture behaviours of SLM AlSi10Mg alloy 被引量:10
9
作者 S.GLODEŽ J.KLEMENC +1 位作者 F.ZUPANIČ M.VESENJAK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2577-2589,共13页
The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating load... The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work. 展开更多
关键词 selective laser melting AlSi10Mg alloy high-cycle fatigue fracture behaviour
下载PDF
Overall Evaluation of the Effect of Residual Stress Induced by Shot Peening in the Improvement of Fatigue Fracture Resistance for Metallic Materials 被引量:11
10
作者 WANG Renzhi RU Jilai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期416-421,共6页
Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM... Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM)and the fracture surface was under 45°diagonal.Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM,which represents as"stress strengthening mechanism",shot peening technology could be used for improving the fatigue fracture resistance(FFR)of springs.However,since 1990s up to date,in addition to regular NTFM,the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM)or transverse shear fracture mode(TSFM)with the increase of applied cyclic shear stresses,which leads to a remarkable decrease of FFR.However,LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs.The phenomena have been rarely happened before.At present there are few literatures concerning this problem.Based upon the results of force analysis of a spring,there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture.This;means that the effect of"stress strengthening mechanism"for improving the FFR of LSFM/TSFM is disappeared basically.During shot peening,however,both of residual stress and cyclic plastic deformed microstructure are induced synchronously like"twins"in the surface layer of a spring.It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the"twins"as a"structure strengthening mechanism"can improve the FFR of LSFM/TSFM.At the same time,it is;also shown that the optimum technology of shot peening strengthening must have both"stress strengthening mechanism"and"structure strengthening mechanism"simultaneously so that the FFR of both NTFM and LSFM/TSFM can be improved by shot peening. 展开更多
关键词 shot peening strengthening principle fatigue fracture resistance strengthening mechanisms of fatigue fracture classification on fatigue fracture mode
下载PDF
Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures 被引量:8
11
作者 Wei Guoqian Odsuren Ochbileg +1 位作者 Yue Xudong Dang Zhang 《China Welding》 EI CAS 2019年第4期39-45,共7页
Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-li... Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life. 展开更多
关键词 WELDED structures fatigue life EQUIVALENT structural stress S-N CURVE fracture MECHANICS
下载PDF
Effects of Microstructure on the Tensile, Fracture Toughness and Fatigue Behaviour of Gamma Titanium Aluminides 被引量:18
12
作者 Young- Won (Y-W.) Kim(UES, Inc., Materials Research Division, 4401 Dayton-Xenia Rd., Dayton, OH 45432, USA)(Paper presented at the International Workshop on OrderedIntermetallics 1992, Hangzhou, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第2期79-91,共13页
The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour i... The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions 展开更多
关键词 MPA fracture Toughness and fatigue Behaviour of Gamma Titanium Aluminides Effects of Microstructure on the Tensile OM
下载PDF
INFLUENCE OF TEMPERATURE ON FATIGUE CREEP INTERACTION FRACTURE MAP 被引量:2
13
作者 ZHANG Hongxue XU Zhichao CHEN Guoliang University of Science and Technology Beijing,Beijing,China Professor,Faculty of Superalloy,University of Science and Technology Beijing,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期215-218,共4页
The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively ... The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively larger than fatigue resistance.Therefore the fatigue damage becomes predominant,and results in expansion of fatigue fracture region(region F),and shrinkage even complete elimination of creep fracture region(region C).A materials parameter Ω can be defined to estimate the temperature at which the creep fracture region is completely de- pressed.This phenomenon could be understood on the basis of the integrated model of compet- itive and cumulative models of fatigue creep interaction. 展开更多
关键词 creep fracture fatigue fatigue creep interaction superaUoy
下载PDF
INVESTIGATION OF FRACTURE DESIGN FOR MEDIUM CARBON STEEL UNDER EXTRA-LOW CYCLIC FATIGUE IN AXIAL LOADING 被引量:3
14
作者 Youtang Li Shuai Tan Hongyan Duan 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期375-382,共8页
The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading f... The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D. 展开更多
关键词 extra-low cyclic fatigue fracture design medium carbon steel crack technique
下载PDF
High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels 被引量:2
15
作者 Weijun HUI Yihong NIE +2 位作者 Han DONG Yuqing WENG Chunxu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期787-792,共6页
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi... The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study. 展开更多
关键词 High-cycle fatigue Ultrahigh strength steel INCLUSION S-N curve Fish-eye fracture
下载PDF
Fatigue fracture analysis of gear teeth using XFEM 被引量:3
16
作者 Yu WEI Yong JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2099-2108,共10页
Gear teeth in gear transmission systems suffer seriously from fatigue failure during service. In this work, a 2 D double-tooth model was constructed with periodic boundary conditions. The fatigue fracture behavior of ... Gear teeth in gear transmission systems suffer seriously from fatigue failure during service. In this work, a 2 D double-tooth model was constructed with periodic boundary conditions. The fatigue fracture behavior of gear teeth was analyzed using the extended finite element method(XFEM), with emphases on the impacts of initial crack geometries and cyclic load factors. The results suggested that the shortest fatigue life is expected for 0° orientation cracks initiating at the maximum principal stress. Cracks that initiate closer to the bottom land of gear tooth are relatively safe. Moreover, to evaluate the fatigue load conditions, load ratio, load range, and mean load should be all taken into considerations. Further XFEM simulation for material selection was performed to guide the gear design. Among various material parameters, the material constant C and tensile strength are the most significant ones in determining the fatigue life. 展开更多
关键词 GEAR fatigue fracture finite element method
下载PDF
Fracture toughness and fatigue crack growth analysis of 7050-T7451 alloy thick plate with different thicknesses 被引量:4
17
作者 王艺淋 潘清林 +2 位作者 韦莉莉 李波 王迎 《Journal of Central South University》 SCIE EI CAS 2014年第8期2977-2983,共7页
The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning elect... The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning electron microscope and transmission electron microscope. The results show that thicker plate has lower strength and fracture toughness but higher fatigue crack growth resistance, by comparison to the thinner plate. The drop of strength is mainly attributed to grain coarsening in the thicker plate, and the increased degree of recrystallization results in the loss of Kio However, the coarsened grains in the thicker plate make cracks deflected and closure effect enhanced due to surface roughness increased. For both of plates, in the fracture surface subjected plain strain, a transition from transgranular dimpled fracture to intergranular dimpled fracture is observed during the fracture process. 展开更多
关键词 7050-T7451 plate STRENGTH fracture toughness fatigue crack growth
下载PDF
The Morphology of Rolling Contact Fatigue Fracture of Hardened Steels 被引量:1
18
作者 王绪 章守华 崔佩庸 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第2期85-89,共5页
Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The m... Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The morphologies of rolling contact fatigue fracture of the har- dened steels (86CrHoV7, 42CrMo) show that strong resemblance in fractuye mechanisms exists between rolling contact fatigue and uni-axial fatigue. Since fatigue striations are hardly observed in hardened steels under uni-axial fatigue, it is interesting to note that the state of stress in rolling contact fatigue is more favor- able to ductile fractures than in uni-axial fatigue. 展开更多
关键词 rolling contact contact fatigue PITTING fracture MORPHOLOGY hardened steels
下载PDF
Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue 被引量:2
19
作者 Ying Wang Yuqian Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期375-419,共45页
A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleati... A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleation theory in combination with continuum mechanics,cellular automata technology(CA)and finite element(FE)analysis,the damage evolution process of steel wire under pre-corrosion and fatigue is simulated.This method automatically generates a high-strength steel wire model with initial random pitting defects,and on the basis of this model,the fatigue damage evolution process is simulated;thus,the fatigue life and fatigue performance of the corroded steel wire can be evaluated.A comparison of the numerical simulation results with the experimental results shows that this method has strong reliability and practicability in predicting the fatigue life of corroded steel wire and simulating the damage evolution process.Based on the method proposed in this paper,the fatigue life of steel wires with different degrees of corrosion under the action of different stress levels is predicted.The results show that as the degree of corrosion increases,the fatigue properties of steel wire gradually decrease,and the influence of existing pitting corrosion on fatigue life is far greater than that on mass loss.Stress concentration is the main cause of fatigue life of corroded steel wire in advance attenuation.In addition,the fracture process of steel wire with multi-fatigue sources and the effect of the number and distribution of pits on the fatigue life of steel wire are studied.The results show that,compared with a stepped pitting distribution,a planar pitting distribution has a greater impact on the damage evolution process.The fatigue life of steel wire is positively correlated with the number of pits and the angle and distance between pits. 展开更多
关键词 Steel wire damage evolution PRE-CORROSION and fatigue multi-fatigue SOURCE fracture cellular AUTOMATA
下载PDF
Effects of laser shock peening on fatigue crack growth rate and fracture properties of AA2524 aluminum alloy 被引量:3
20
作者 LI Song-bai LI Xiang +3 位作者 LIANG Wei LIU Yi-lun YAN Hong-zhi LIU Chi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期848-859,共12页
In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP... In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension(CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal(BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP. 展开更多
关键词 AA2524 alloy laser shock peening fatigue crack growth fracture toughness residual stress grain refinement
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部