期刊文献+
共找到330,353篇文章
< 1 2 250 >
每页显示 20 50 100
Locality preserving fusion of multi-source images for sea-ice classification 被引量:1
1
作者 Zhiqiang Yu Tingwei Wang +2 位作者 Xi Zhang Jie Zhang Peng Ren 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第7期129-136,共8页
We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both sp... We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework. 展开更多
关键词 SEA-ICE CLASSIFICATION multi-source image FUSION ensemble CLASSIFICATION
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
2
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
3
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Background removal from global auroral images:Data-driven dayglow modeling 被引量:1
4
作者 A.Ohma M.Madelaire +4 位作者 K.M.Laundal J.P.Reistad S.M.Hatch S.Gasparini S.J.Walker 《Earth and Planetary Physics》 EI CSCD 2024年第1期247-257,共11页
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but... Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission. 展开更多
关键词 AURORA dayglow modeling global auroral images far ultraviolet images dayglow removal
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images 被引量:2
5
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
6
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
DeepSVDNet:A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images 被引量:1
7
作者 Anas Bilal Azhar Imran +4 位作者 Talha Imtiaz Baig Xiaowen Liu Haixia Long Abdulkareem Alzahrani Muhammad Shafiq 《Computer Systems Science & Engineering》 2024年第2期511-528,共18页
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ... Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection. 展开更多
关键词 Diabetic retinopathy(DR) fundus images(FIs) support vector machine(SVM) medical image analysis convolutional neural networks(CNN) singular value decomposition(SVD) classification
下载PDF
Reconstruction of Knowledge and Medical Images in the Convergence of Chinese and Western Medicine:Taking “Sweet Meat” as an Example 被引量:1
8
作者 GU Xiaoyang 《Chinese Medicine and Culture》 2024年第3期204-212,共9页
The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started... The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”. 展开更多
关键词 Medical terminology Sweet meat Medical missionaries PANCREAS History of images
下载PDF
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features 被引量:1
9
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned Aerial Vehicles(UAV) aerial images DATASET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
10
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
下载PDF
Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures
11
作者 Fayez Alfayez 《Computers, Materials & Continua》 SCIE EI 2024年第4期1539-1560,共22页
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu... This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms. 展开更多
关键词 Feature reduction image classification X-ray images
下载PDF
Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory
12
作者 Ahmed H.Alhadethi Ikram Smaoui +1 位作者 Ahmed Fakhfakh Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2024年第6期4825-4844,共20页
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c... The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%. 展开更多
关键词 image transmission image compression text hiding Bezier curve Histogram of Oriented Gradients(HOG) LSTM image enhancement Gaussian noise ROTATION
下载PDF
Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images
13
作者 Sonali Das Saroja Kumar Rout +5 位作者 Sujit Kumar Panda Pradyumna Kumar Mohapatra Abdulaziz S.Almazyad Muhammed Basheer Jasser Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期893-916,共24页
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia... In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches. 展开更多
关键词 Leukemia cancer medical imaging image classification deep learning marine predators algorithm
下载PDF
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
14
作者 Zichen Jin Qing He +1 位作者 Yang Liu Kaige Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期53-65,共13页
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo... Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels. 展开更多
关键词 Deep learning super-resolution imaging generalized model framework generation adversarial networks image reconstruction.
下载PDF
A Preliminary Comparative Study on the Centering Algorithms for CassiniISS NAC Images
15
作者 T.Liang Q.-F.Zhang +2 位作者 G.-M.Liu W.-H.Zhu C.-S.Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第10期58-65,共8页
Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key ... Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images. 展开更多
关键词 methods:analytical techniques:image processing stars:imaging ASTROMETRY
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
16
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
17
作者 Huanhua Liu Wei Wang +3 位作者 Hanyu Liu Shuheng Yi Yonghao Yu Xunwen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期459-472,共14页
Deep Convolutional Neural Networks(CNNs)have achieved high accuracy in image classification tasks,however,most existing models are trained on high-quality images that are not subject to image degradation.In practice,i... Deep Convolutional Neural Networks(CNNs)have achieved high accuracy in image classification tasks,however,most existing models are trained on high-quality images that are not subject to image degradation.In practice,images are often affected by various types of degradation which can significantly impact the performance of CNNs.In this work,we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model(DTA-ICM)to improve the existing CNNs’classification accuracy on degraded images.The proposed DTA-ICM comprises two key components:a Degradation Type Predictor(DTP)and a Degradation Type Specified Image Classifier(DTS-IC)set,which is trained on existing CNNs for specified types of degradation.The DTP predicts the degradation type of a test image,and the corresponding DTS-IC is then selected to classify the image.We evaluate the performance of both the proposed DTP and the DTA-ICMon the Caltech 101 database.The experimental results demonstrate that the proposed DTP achieves an average accuracy of 99.70%.Moreover,the proposed DTA-ICM,based on AlexNet,VGG19,and ResNet152,exhibits an average accuracy improvement of 20.63%,18.22%,and 12.9%,respectively,compared with the original CNNs in classifying degraded images.It suggests that the proposed DTA-ICM can effectively improve the classification performance of existing CNNs on degraded images,which has important practical implications. 展开更多
关键词 image recognition image degradation machine learning deep convolutional neural network
下载PDF
Design of a novel hybrid quantum deep neural network in INEQR images classification
18
作者 王爽 王柯涵 +3 位作者 程涛 赵润盛 马鸿洋 郭帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期230-238,共9页
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu... We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network. 展开更多
关键词 quantum computing image classification quantum–classical hybrid neural network quantum image representation INTERPOLATION
下载PDF
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
19
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional Neural Network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
Classification and detection of dental images using meta-learning
20
作者 Pradeep Kumar Yadalam Raghavendra Vamsi Anegundi +1 位作者 Mario Alberto Alarcón-Sánchez Artak Heboyan 《World Journal of Clinical Cases》 SCIE 2024年第32期6559-6562,共4页
Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teachi... Meta-learning of dental X-rays is a machine learning technique that can be used to train models to perform new tasks quickly and with minimal input.Instead of just memorizing a task,this is accomplished through teaching a model how to learn.Algorithms for meta-learning are typically trained on a collection of training problems,each of which has a limited number of labelled instances.Multiple Xray classification tasks,including the detection of pneumonia,coronavirus disease 2019,and other disorders,have demonstrated the effectiveness of meta-learning.Meta-learning has the benefit of allowing models to be trained on dental X-ray datasets that are too few for more conventional machine learning methods.Due to the high cost and lengthy collection process associated with dental imaging datasets,this is significant for dental X-ray classification jobs.The ability to train models that are more resistant to fresh input is another benefit of meta-learning. 展开更多
关键词 Artificial intelligence META-LEARNING Dental diagnosis image segmentation Medical image interpretation Dental radiography
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部