期刊文献+
共找到31,035篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China 被引量:1
1
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao irrigation District
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
2
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Quantification of irrigation water transport processes in ZiZiphus jujuba garden using water stable isotopes
3
作者 ZHONG Xiaofei ZHANG Mingjun +3 位作者 CHE Cunwei LIU Zechen LI Beibei ZHANG Yuanyuan 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3263-3274,共12页
ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.T... ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management. 展开更多
关键词 Water stable isotopes Different irrigation volumes ZiZiphus jujuba irrigation water infiltration process MixSIAR model
下载PDF
Expert consensus on irrigation and intracanal medication in root canal therapy
4
作者 Xiaoying Zou Xin Zheng +25 位作者 Yuhong Liang Chengfei Zhang Bing Fan Jingping Liang Junqi Ling Zhuan Bian Qing Yu Benxiang Hou Zhi Chen Xi Wei Lihong Qiu Wenxia Chen Wenxi He Xin Xu Liuyan Meng Chen Zhang Liming Chen Shuli Deng Yayan Lei Xiaoli Xie Xiaoyan Wang Jinhua Yu Jin Zhao Song Shen Xuedong Zhou Lin Yue 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第1期26-35,共10页
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical regi... Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes. 展开更多
关键词 TREATMENT irrigation EXPERT
下载PDF
Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China:Achieving environmental and agronomic sustainability
5
作者 Bingqian Fan Yitao Zhang +8 位作者 Owen Fenton Karen Daly Jungai Li Hongyuan Wang Limei Zhai Xiaosheng Luo Qiuliang Lei Shuxia Wu Hongbin Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1022-1033,共12页
Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigati... Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigation management in different soil types is crucial to reduce future N loads from such systems.The present 4-year study examined leached N loads from lysimeter monitoring arrays set up across 18 protected vegetable system sites encompassing the dominant soil types of northern China.The treatments applied at each field site were:1) a high N and high irrigation input treatment (HNHI);2) a low N but high irrigation input treatment (LNHI) and 3) a low N with low irrigation input treatment (LNLI).Results showed that the mean annual leached total nitrogen loads from the HNHI,LNHI and LNLI treatments were 325,294 and 257 kg N ha^(–1) in the fluvo-aquic soil,114,100 and 78 kg N ha^(–1) in the cinnamon soil and 79,68 and 57 kg N ha^(–1) in the black soil,respectively.The N dissolved in irrigation water in the fluvo-aquic soil areas was 8.26-fold higher than in the cinnamon areas.A structural equation model showed that N fertiliser inputs and leaching water amounts explained 14.7 and 81.8%of the variation of leached N loads,respectively.Correspondingly,reducing irrigation water by 21.5%decreased leached N loads by 20.9%,while reducing manure N and chemical N inputs by 22 and 25%decreased leached N loads by only 9.5%. This study highlights that protected vegetable fields dominated by fluvo-aquic soil need management to curtail leached N losses in northern China. 展开更多
关键词 agriculture water quality NITRATE GROUNDWATER irrigation management
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
6
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
下载PDF
Effect of Water Application Rate on Growth Parameters of Farro 44 Rice Grown in a Selected Irrigation Scheme in Niger State, Nigeria
7
作者 Ebierni Akpoebidimiyen Otuaro John Jiya Musa +2 位作者 Abayomi Ibrahim Kuti Peter Obasa Sunday Enebojojo Daniel 《Agricultural Sciences》 2024年第5期533-547,共15页
Water and land are the necessary agricultural inputs, and both are scarce these days. This study aims to determine the effect of water application rate on selected planting and crop parameters of Farro 44 rice during ... Water and land are the necessary agricultural inputs, and both are scarce these days. This study aims to determine the effect of water application rate on selected planting and crop parameters of Farro 44 rice during dry season farming and its growth response. The randomised complete block design was employed for the Farro 44 rice variety, with each plot size 4 m<sup>2</sup> (2 m × 2 m) for ease of monitoring. A 0.3 m bound space separated each plot. The crop spacing was 0.2 m × 0.3 m, 0.3 m × 0.3 m, and 0.3 m × 0.4 m, respectively, for the row-to-row and plant-to-plant distance. The data collected were statistically analysed. The height of the faro 44 variety of rice ranged between 35.50 cm to 44.00 cm for plots with 2 tillers per hill, while that of 4 and 6 tillers per hill ranged between 35.50 cm to 41.40 cm and 35.50 cm to 39.30 cm, respectively. Minimum damage of 2.32% was seen for plant hills of 2 tillers, while 9.21% and 11.89% were observed for tillers of 4 and 6, respectively. It was seen that plots with the highest spacing of 30 × 40 cm and tillers of 2 per hill were observed to perform better than those of the other plots within the experimental pots. Such plots had a maximum plant tiller of 37 when counted, with the height of the plants reaching 44 cm after 70 days of planting. In conclusion, farmers within the study area of the Kanko community in Niger State. Nigeria appears not to have any known knowledge of the soil they are cultivating and the water they use as a source of irrigation within the farming areas. It was further concluded that the rice crops would be produced maximally with minimal water application to the rice field. 展开更多
关键词 Farro 44 WATER RICE irrigation DAYS
下载PDF
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
8
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH Soil water potential irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
9
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
下载PDF
Exploring the combination of biochar‐amended soil and automated irrigation technology for water regulation and preservation in green infrastructure
10
作者 Honghu Zhu Yuanxu Huang +4 位作者 Haihong Song Jian Chen Songlei Han Tanwee Mazumder Ankit Garg 《Deep Underground Science and Engineering》 2024年第1期39-52,共14页
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content... Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment. 展开更多
关键词 BIOCHAR drip irrigation UNDERGROUND water preservation water regulation
下载PDF
Irrigation and Thermal Buffering Using Mathematical Modeling
11
作者 Yara Yasser Elborolosy Harsho Sanyal Joseph Cataldo 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期19-32,共14页
Two methods of irrigation,drip,and sprinkler were studied to determine the response of the Javits green roof to irrigation.The control study was dry unirrigated plots.Drip irrigation consisted of irrigation tubes runn... Two methods of irrigation,drip,and sprinkler were studied to determine the response of the Javits green roof to irrigation.The control study was dry unirrigated plots.Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout and sprinkler irrigation used a sprinkler system to irrigate the green roof from above.In all cases,the irrigated roofs had increased the soil moisture,reduced temperatures of both the upper and lower surfaces,reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof.The buffered temperature fluctuations were also studied via air conditioner energy consumption.There was a 28%reduction in air conditioner energy consumption and a 33%reduction in overall energy consumption between dry and irrigated plots.Values of thermal resistance or S were determined for accuracy and for this study,there was little change which is ideal.A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum.It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.A Mann-Whitney U test was performed to verify the variation in moisture temperatures buffering energy consumption.By getting a p-value<0.05,it indicates that the model is accurate for prediction and medium temperatures were statistically different. 展开更多
关键词 Green roofs irrigation DRIP SPRINKLER Thermal buffering
下载PDF
Grain-filling strategies of wheat of contrasting grain sizes under various planting patterns and irrigation levels
12
作者 Zimeng Liang Jingyi Feng +4 位作者 Jiayu Li Yangyang Tang Tiankang He Vinay Nangia Yang Liu 《The Crop Journal》 SCIE CSCD 2024年第3期897-906,共10页
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ... In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538. 展开更多
关键词 Plastic-covered ridge and furrow cultivation Sprinkler irrigation WHEAT Grain size Grain filling
下载PDF
Effect of Supplementary Irrigation on the Yield of Sorghum (Sorghum bicolor L. Moench) in the Context of Climate Change in the Dry Savannahs of Togo
13
作者 Adjiwanou Atiglo-Gbenou Yaovi Ouézou Azouma Jean Mianikpo Sogbedji 《American Journal of Climate Change》 2024年第2期163-174,共12页
Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah regi... Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system. 展开更多
关键词 Climate Change Supplementary irrigation Sorghum Grain Yield Dry Savannah TOGO
下载PDF
Reform of the Irrigation Sector and Creation of Functional and Sustainable Irrigation Water Users Associations (AUEI) in Niger: Capitalization of the Experience of the Konni AHA
14
作者 Saidou Abdoulkarimou Illou Mahamadou 《Agricultural Sciences》 2024年第2期209-229,共21页
During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to coo... During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI. 展开更多
关键词 Konni (Niger) Hydro-Agricultural Developments Association of irrigation Water Users GOVERNANCE
下载PDF
Exploring the impact of high density planting system and deficit irrigation in cotton(Gossypium hirsutum L.):a comprehensive review
15
作者 MANIBHARATHI Sekar SOMASUNDARAM Selvaraj +3 位作者 PARASURAMAN Panneerselvam SUBRAMANIAN Alagesan RAVICHANDRAN Veerasamy MANIKANDA BOOPATHI Narayanan 《Journal of Cotton Research》 CAS 2024年第3期302-317,共16页
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere... Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems. 展开更多
关键词 Deficit irrigation High density planting system Ultra narrow row Cost saving Mechanical harvesting Yield optimization
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
16
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
Spectral matching based remote sensing identification of two main crop rotation patterns in a large irrigation district
17
作者 DUAN Yuanyuan CHEN Xiuhua +3 位作者 LIU Jun YE Mao LU Wenjing LIU Hongjie 《中国水利水电科学研究院学报(中英文)》 北大核心 2024年第6期640-650,共11页
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith... The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district. 展开更多
关键词 Chuanhang irrigation district rotate crop pattern spectral matching OTSU algorithm Mean-Shift algorithm
下载PDF
A Web-Based Approach for the Efficient Management of Massive Multi-source 3D Models
18
作者 ZHAO Qiansheng TANG Ruibing +1 位作者 PENG Mingjun GUO Mingwu 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期24-41,共18页
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development... Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%. 展开更多
关键词 massive multi-source real-scene 3D model non-relational database global 3D geocoding system importance factor massive model management
下载PDF
Spatio-temporal variation and relationship between agricultural efficiency and irrigation intensity in a semi-arid region of India
19
作者 Shibu DAS Kaushal Kumar SHARMA +2 位作者 Suranjan MAJUMDER Debabrata DAS Indrajit Roy CHOWDHURY 《Regional Sustainability》 2024年第2期123-139,共17页
A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve... A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve United Naton’s Sustainable Development Goal 2(zero hunger).Therefore,in order to address the pressing issue of food scarcity in Karnataka,this study meticulously examined the spatio-temporal variation of agricultural efficiency and irrigation intensity in Karnataka,uncovering its significant dependence of agricultural efficiency on irrigation intensity.Specifically,this study used a one-way analysis of variance(ANOVA)to ascertain significant differences in the means of agricultural efficiency and irrigation intensity during 2004-2005 and 2018-2019.This study showed that the maximum improvement in agricultural efficiency index was recorded in Belgaum(40.24),Gulbarga(24.77),and Yadgir districts(22.92)between 2004-2005 and 2018-2019,which indicated the progressing trend and better scope for agriculture extension.On the contrary,some districts expressed threat(a decline of above 20.00 of agricultural efficiency index)and needed special care for the improvement of agricultural efficiency in four northern districts(Bagalkot,Bidar,Raichur,and Bijapur),three southern districts(Chitradurga,Chikballapur and Hassan),and two southern districts(Koppal and Gadag)in Karnataka.During 2004-2005,irrigation intensity varied from 3.19%to 56.39%,with the lowest irrigation intensity in Kodagu District and the highest irrigation intensity in Shimoga District.During 2018-2019,irrigation intensity changed from 0.77%to 72.77%,with the lowest irrigation intensity in Kodagu District and the highest in Dakshin Kannad District.Moreover,the research scrutinized the complex relationship between agricultural efficiency and irrigation intensity,with the correlation coefficient increased from 0.162 during 2004-2005 to 0.255 during 2018-2019.It implies that in both periods,a low positive correlation existed between these two variables.Over time,several factors(high-yield seeds and chemical fertilizers)other than irrigation intensity gradually became essential for agricultural efficiency.This research offers a wealth of valuable insights for regional planners and policy-makers contending with comparable challenges in various regions of India and other developing countries. 展开更多
关键词 Agricultural efficiency irrigation intensity One-way analysis of variance(ANOVA) Food security KARNATAKA
下载PDF
Outcomes of early versus late irrigation and debridement of pediatric open long bone fractures
20
作者 Riya Savla Yen-Hong Kuo Nasim Ahmed 《World Journal of Orthopedics》 2024年第6期539-546,共8页
BACKGROUND Open long bone fractures are a major concern for pediatric patients due to the risk of surgical site infection(SSI).Early studies have recommended irrigation and debridement of open fractures within 6 hours... BACKGROUND Open long bone fractures are a major concern for pediatric patients due to the risk of surgical site infection(SSI).Early studies have recommended irrigation and debridement of open fractures within 6 hours-8 hours for the prevention of SSI.According to the American College of Surgeons(ACS)Best Practice Guidelines,in 2015,irrigation and debridement should be done within 24 hours.AIM To identify whether early irrigation and debridement,within 8 hours,vs late,between 8 hours and 24 hours,for pediatric open long bone fractures impacts rate of SSI.METHODS Using retrospective data review from the National Trauma Data Bank,Trauma Quality Improvement Project(TQIP)of 2019.TQIP database is own by the ACS and it is the largest database for trauma quality program in the world.Propensity matching analysis was performed for the study.RESULTS There were 390 pediatric patients with open long bone fractures who were incl-uded in the study.After completing propensity score matching,we had 176 patients in each category,irrigation and debridement within 8 hours and irrigation and debridement between 8 hours and 24 hours.We found no significant differences between each group for the rate of deep SSI which was 0.6%for patients who received surgical irrigation and debridement within 8 hours and 1.1%for those who received it after 8 hours[adjusted odd ratio(AOR):0.5,95%CI:0.268-30.909,P>0.99].For the secondary outcomes studied,in terms of length of hospital stay,patients who received irrigation and debridement within 8 hours stayed for an average of 3.5 days,and those who received it after 8 hours stayed for an average of 3 days,with no significant difference found,and there were also no sig-nificant differences found between the discharge dispositions of the patients.CONCLUSION Our findings support the recommendation for managing open long bone fractures from the ACS:Complete surgical irrigation and debridement within 24 hours. 展开更多
关键词 Pediatric trauma Open tibia fracture irrigation and debridement Timing of intervention Surgical site infection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部