Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin...Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.展开更多
Precipitation types primarily include rainfall,snowfall,and sleet,and the transformation of precipitation types has significant impacts on regional climate,ecosystems,and the land-atmosphere system.This study employs ...Precipitation types primarily include rainfall,snowfall,and sleet,and the transformation of precipitation types has significant impacts on regional climate,ecosystems,and the land-atmosphere system.This study employs the Ding method to separate precipitation types from three datasets(CMFD,ERA5_Land,and CN05.1).Using data from 26meteorological observation stations in the Chinese Tianshan Mountains Region(CTMR)of China as the validation dataset,the precipitation type separation accuracy of three datasets was evaluated.Additionally,the impacts of relative humidity,precipitation amount,and air temperature on the accuracy of precipitation type separation were analyzed.The results indicate that the CMFD dataset provides the highest separation accuracy,followed by CN05.1,with ERA5_Land showing the poorest performance.Spatial correlation analysis reveals that CMFD outperforms the other two datasets at both annual and monthly scales.Root Mean Square Error(RMSE)and Mean Deviation(MD)values suggest that CMFD is more consistent with the station observational data.The analysis further demonstrates that relative humidity and precipitation amount significantly affect separation accuracy.After bias correction,the correlation coefficients between CMFD,ERA5_Land,and station observational data improved to 0.85-0.94,while the RMSE was controlled within 2 mm.The study also revealed that the overestimation of precipitation was positively correlated with the overestimation of rainfall days,negatively correlated with the overestimation of snowfall days,and that underestimated air temperatures led to an increase in the misclassification of snowfall days.This research provides a basis for selecting climate change datasets and managing water resources in alpine regions.展开更多
基金Under the auspices of Fujian Natural Science Foundation General Program(No.2020J01572)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)。
文摘Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.
基金financial support from the National Natural Sciences Foundation of China(42261026,and 42161025)the Open Foundation of Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone(XJYS0907-2023-01)。
文摘Precipitation types primarily include rainfall,snowfall,and sleet,and the transformation of precipitation types has significant impacts on regional climate,ecosystems,and the land-atmosphere system.This study employs the Ding method to separate precipitation types from three datasets(CMFD,ERA5_Land,and CN05.1).Using data from 26meteorological observation stations in the Chinese Tianshan Mountains Region(CTMR)of China as the validation dataset,the precipitation type separation accuracy of three datasets was evaluated.Additionally,the impacts of relative humidity,precipitation amount,and air temperature on the accuracy of precipitation type separation were analyzed.The results indicate that the CMFD dataset provides the highest separation accuracy,followed by CN05.1,with ERA5_Land showing the poorest performance.Spatial correlation analysis reveals that CMFD outperforms the other two datasets at both annual and monthly scales.Root Mean Square Error(RMSE)and Mean Deviation(MD)values suggest that CMFD is more consistent with the station observational data.The analysis further demonstrates that relative humidity and precipitation amount significantly affect separation accuracy.After bias correction,the correlation coefficients between CMFD,ERA5_Land,and station observational data improved to 0.85-0.94,while the RMSE was controlled within 2 mm.The study also revealed that the overestimation of precipitation was positively correlated with the overestimation of rainfall days,negatively correlated with the overestimation of snowfall days,and that underestimated air temperatures led to an increase in the misclassification of snowfall days.This research provides a basis for selecting climate change datasets and managing water resources in alpine regions.