A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning Sys...A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning System) and ancillary data were combined by the method which adopts the main idea of classifying images by steps from decision tree method and the hybridized supervised and unsupervised classification. An integration of automatic image interpretation, ancillary materials and expert knowledge was realized. Two subscenes of Landsat 5 Thematic Mapper (TM) images of bands 3, 4 and 5 obtained on December 15, 1992, and January 17, 1999, were used for image processing and spatial data analysis in the study. The overall accuracy of the results of classification reached 90%, which was verified by field check.Results showed that shrimp farm land, urban and traffic land, barren land, bush and agricultural developing area increased in area, mangrove, paddy field, swamp and marsh land, orchard and plantation, and tropical grass land decreased, and the forest land kept almost stable. Ecological analysis on the land use changes showed that more attentions should be paid on the effect of land development on ecological environment in the future land planning and management.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy...This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise...In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise the repetitive capability of satellite remotesensing imagery to identify the location of change to the Earth's surface and integrate thedifferent remotely sensed indices.The results confirm that the procedure can offer essentialspatial information for bushfire assessment.展开更多
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso...This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.展开更多
This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detect...This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ...Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with...The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with a smooth surface in the laboratory. An optical remote sensing simulation system used to detect ISWs is constructed by a two-dimensional ISW flume, a LED (light emitting diode) light source and two CCD (charge coupled device) cameras. The optical remote sensing images of the horizontal surface and ISWs propagation images of a vertical side are detected simultaneously, which aims to explore the response of optical remote sensing corresponding to ISWs with the smooth surface. The results show that during the propagation of ISWs, dark pattern images are obtained by CCD 1 camera. The characteristics of the dark patterns vary along with the incident angle of the light source. The characteristic parameters of the optical remote sensing images correspond to the wave factors of vertical profiles. The experiment also shows a positive correlation between the dark pattern width and the half wave width under different amplitudes of ISWs. The system has the advantages of clear phenomenon and high repeatability, which provides the scientific basis for quantitative investigation on imaging mechanism of ISW by optical remote sensing.展开更多
The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of mass...The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of massive remote sensing images with its large storage space,cost savings.However,the openness of cloud brings challenges for image data security.In this paper,we propose a weighted image sharing scheme to ensure the security of remote sensing in cloud environment,which takes the weights of participants(i.e.,cloud service providers)into consideration.An extended Mignotte sequence is constructed according to the weights of participants,and we can generate image shadow shares based on the hash value which can be obtained from gray value of remote sensing images.Then we store the shadows in every cloud service provider,respectively.At last,we restore the remote sensing image based on the Chinese Remainder Theorem.Experimental results show the proposed scheme can effectively realize the secure storage of remote sensing images in the cloud.The experiment also shows that no matter weight values,each service providers only needs to save one share,which simplifies the management and usage,it also reduces the transmission of secret information,strengthens the security and practicality of this scheme.展开更多
To segment high-resolution remote sensing images(RSIs)accurately on an object level and meet the precise boundary dividing requirement,an improved superpixel segmentation and region merging algorithm is proposed.Simpl...To segment high-resolution remote sensing images(RSIs)accurately on an object level and meet the precise boundary dividing requirement,an improved superpixel segmentation and region merging algorithm is proposed.Simple linear iterative clustering(SLIC)is widely used because of its advantages in performance and effect;however,it causes over-segmentation,which is very disadvantageous to information extraction.In this proposed method,SLIC is firstly adopted for initial superpixel partition.The second stage follows the iterative merging procedure,which uses a hierarchical clustering algorithm and introduces a local binary pattern(LBP)texture feature operator during the process of merging.The experimental results indicate that the proposed method achieved a good segmentation and region merging performance,and worked effectively on cloud detection preprocessing in high-resolution RSIs with cloud and snow overlap situations.展开更多
With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and compute...With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.展开更多
基金Project supported by the Tingthanathikul Foundation of Thailand, the Provincial Natural Science Foun- dation of Jiangxi (No. 0230025) the Open Research Foundation of Hubei Provincial Key Labaratory of Waterlogged Disaster and Wetland Agriculture (No. H
文摘A comprehensive method of image classification was developed for monitoring land use dynamics in Chanthaburi Province of Tailand. RS (Remote Sensing), GIS (Geographical Information System), GPS (Global Positioning System) and ancillary data were combined by the method which adopts the main idea of classifying images by steps from decision tree method and the hybridized supervised and unsupervised classification. An integration of automatic image interpretation, ancillary materials and expert knowledge was realized. Two subscenes of Landsat 5 Thematic Mapper (TM) images of bands 3, 4 and 5 obtained on December 15, 1992, and January 17, 1999, were used for image processing and spatial data analysis in the study. The overall accuracy of the results of classification reached 90%, which was verified by field check.Results showed that shrimp farm land, urban and traffic land, barren land, bush and agricultural developing area increased in area, mangrove, paddy field, swamp and marsh land, orchard and plantation, and tropical grass land decreased, and the forest land kept almost stable. Ecological analysis on the land use changes showed that more attentions should be paid on the effect of land development on ecological environment in the future land planning and management.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
文摘This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
文摘In order to minimise the bushfires negative impacts on society, an efficient andreliable bushfire detection system was proposed to assess the devastated effects of the2009 Victorian bushfires.It is possible to utilise the repetitive capability of satellite remotesensing imagery to identify the location of change to the Earth's surface and integrate thedifferent remotely sensed indices.The results confirm that the procedure can offer essentialspatial information for bushfire assessment.
文摘This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.
文摘This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
基金The National Key Research and Development Program of China under contract No.2017YFC1405600the National Natural Science Foundation of China under contract No.41476001
文摘The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with a smooth surface in the laboratory. An optical remote sensing simulation system used to detect ISWs is constructed by a two-dimensional ISW flume, a LED (light emitting diode) light source and two CCD (charge coupled device) cameras. The optical remote sensing images of the horizontal surface and ISWs propagation images of a vertical side are detected simultaneously, which aims to explore the response of optical remote sensing corresponding to ISWs with the smooth surface. The results show that during the propagation of ISWs, dark pattern images are obtained by CCD 1 camera. The characteristics of the dark patterns vary along with the incident angle of the light source. The characteristic parameters of the optical remote sensing images correspond to the wave factors of vertical profiles. The experiment also shows a positive correlation between the dark pattern width and the half wave width under different amplitudes of ISWs. The system has the advantages of clear phenomenon and high repeatability, which provides the scientific basis for quantitative investigation on imaging mechanism of ISW by optical remote sensing.
基金This research was partly supported by(National Natural Science Foundation of China under 41671431,61572421and Shanghai Science and Technology Commission Project 15590501900.
文摘The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of massive remote sensing images with its large storage space,cost savings.However,the openness of cloud brings challenges for image data security.In this paper,we propose a weighted image sharing scheme to ensure the security of remote sensing in cloud environment,which takes the weights of participants(i.e.,cloud service providers)into consideration.An extended Mignotte sequence is constructed according to the weights of participants,and we can generate image shadow shares based on the hash value which can be obtained from gray value of remote sensing images.Then we store the shadows in every cloud service provider,respectively.At last,we restore the remote sensing image based on the Chinese Remainder Theorem.Experimental results show the proposed scheme can effectively realize the secure storage of remote sensing images in the cloud.The experiment also shows that no matter weight values,each service providers only needs to save one share,which simplifies the management and usage,it also reduces the transmission of secret information,strengthens the security and practicality of this scheme.
文摘To segment high-resolution remote sensing images(RSIs)accurately on an object level and meet the precise boundary dividing requirement,an improved superpixel segmentation and region merging algorithm is proposed.Simple linear iterative clustering(SLIC)is widely used because of its advantages in performance and effect;however,it causes over-segmentation,which is very disadvantageous to information extraction.In this proposed method,SLIC is firstly adopted for initial superpixel partition.The second stage follows the iterative merging procedure,which uses a hierarchical clustering algorithm and introduces a local binary pattern(LBP)texture feature operator during the process of merging.The experimental results indicate that the proposed method achieved a good segmentation and region merging performance,and worked effectively on cloud detection preprocessing in high-resolution RSIs with cloud and snow overlap situations.
基金supported in part by the National Natural Science Foundation of China under Grants(62250410365,62071084)the Guangdong Basic and Applied Basic Research Foundation of China(2022A1515011542)the Guangzhou Science and technology program of China(202201010606).
文摘With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.