Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation ...Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as templat...The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as template.The sampled particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption-desorption measurement,X-ray diffraction(XRD),Energy dispersive X-Ray spectroscopy(EDX),Fourier transform infrared spectroscopy(FTIR),Thermogravimetric analysis and differential scanning calorimetry(TGA-DSC),etc.It is shown that the assynthesized hollow strontium carbonate pompons with the size of about 2μm consist of flake-like particles under the optimal reaction conditions.The formation mechanism of hollow strontium carbonate pompons was preliminarily explored.展开更多
There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning met...There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning methods,which can locate and identify different objects,but boundary identifications are not accurate enough.Both of them cannot generate entire segmentation information.In order to obtain accurate edge detection and semantic information,an Adaptive Boundary and Semantic Composite Segmentation method(ABSCS)is proposed.This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances.It includes adaptively dividing and modifying the aerial images with the proposed principles and methods,using the deep learning method to semantic segment and preprocess the small divided pieces,using three traditional methods to segment and preprocess original-size aerial images,adaptively selecting traditional results tomodify the boundaries of individual objects in deep learning results,and combining the results of different objects.Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset,and their results are analyzed qualitatively and quantitatively.The experimental results demonstrate that the proposed method can achieve more promising object boundaries than the original deep learning method.This work also demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and image inpainting.展开更多
Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processi...Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processing methods.Here,we conducted a lipidomics analysis using UPLC-QTOF-MS to characterize the lipid composition of cold-pressed hazelnut oil(CPO),ultrasonic-assisted hexane hazelnut oil(UHO)and enzyme-assisted aqueous hazelnut oil(EAO).A total of 10 subclasses of 98 lipids were identified,including35 glycerolipids(GLs),56 glycerophospholipids(GPs)and 7 sphingolipids(SPs).The total lipid and GL content were the highest in CPO,GP content was the highest in UHO and the ceramide content in SPs was most abundant in EAO.Multivariate statistical analysis showed that the lipid profiles of hazelnut oil prepared with different processing methods varied.Twelve significantly different lipids(TAG 54:3,TAG 52:2,TAG54:4,TAG 54:2,TAG 52:3,TAG 54:5,DAG 36:2,DAG 36:4,DAG 36:3,PC 36:2,PA 36:2 and PE 36:3)were identified,and these lipids could potentially be used as biomarkers to distinguish between hazelnut oil subjected to different processing methods.Our results provide useful information for hazelnut oil applications and new insight into the effects of edible oil processing.展开更多
In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples ar...In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. ...A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.展开更多
One of the most challenging factors affecting impression quality and good marginal fit is the gingival retraction method, which aims to separate the gingiva from the tooth to expose the finishing line of the prepared ...One of the most challenging factors affecting impression quality and good marginal fit is the gingival retraction method, which aims to separate the gingiva from the tooth to expose the finishing line of the prepared tooth. Bleeding and contamination from the crevicular fluid may compete for space with the impression material within the sulcus, leading to indistinct preparations and a lack of detail at the margin. In addition, such procedures might damage the PDL and cause permanent recession. Flowable composite cable, as opposed to traditional retraction cords, offers the proper marginal seal and visibility during the impression record because of its lower viscosity, improved adaptability, and elastic properties. The aim of this report is to present a brand-new, innovative method for controlling gingival hemorrhage in addition to the gingival retraction in restorative and prosthodontic treatment by utilizing a flowable composite during the final impression record procedure. In these case reports, the flowable composite cord technique is used instead of traditional gingival cords to modify and refine the gingival tissue before taking the traditional final impression or digital scan. Two cases were done for patients undergoing fixed prosthodontics and veneer treatment within a 2-year follow-up period. In addition, the flowable composite cord was used as temporary restoration before the final prosthetic cementation or under the provisional crowns. As a result, clean and healthy gingival tissues render cementation of the final prosthesis quicker and easier to perform. The patients in both cases claimed that their prosthodontic treatments, which involved the application of a flowable composite cord to temporarily retraction the gingiva, had produced good outcomes at the yearlong follow-up. In conclusion, the flowable composite cord technique is found to be a useful tool to improve the quality of impressions in fixed prosthodontics by providing excellent access for impression material to record fine details of the finish line of the prepared tooth structure, and to alter the inflamed tissue into a healthy tissue.展开更多
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in...Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.展开更多
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck...Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.展开更多
The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of...The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金The research was funded by VSB-Technical University of Ostrava,the SGS Projects SP2022/58,SP2023/008.Huanyu Li,Ing.,Economic Faculty,VSB-TUO,Ostrava,Czech Republic。
文摘Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
基金Funded by the National Natural Science Foundation of China(No.22002143)the Natural Science Foundation of Shanxi Province of China(No.201901D211223)the Postgraduate Students Scientific Research Project of North University of China(No.20201766)。
文摘The hollow strontium carbonate pompons was synthesized for the first time by a controlled reaction precipitation method with sodium dodecyl benzene sulfonate(SDBS)and polyvinyl pyrrolidone(PVP)work together as template.The sampled particles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption-desorption measurement,X-ray diffraction(XRD),Energy dispersive X-Ray spectroscopy(EDX),Fourier transform infrared spectroscopy(FTIR),Thermogravimetric analysis and differential scanning calorimetry(TGA-DSC),etc.It is shown that the assynthesized hollow strontium carbonate pompons with the size of about 2μm consist of flake-like particles under the optimal reaction conditions.The formation mechanism of hollow strontium carbonate pompons was preliminarily explored.
基金funded in part by the Equipment Pre-Research Foundation of China,Grant No.61400010203in part by the Independent Project of the State Key Laboratory of Virtual Reality Technology and Systems.
文摘There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning methods,which can locate and identify different objects,but boundary identifications are not accurate enough.Both of them cannot generate entire segmentation information.In order to obtain accurate edge detection and semantic information,an Adaptive Boundary and Semantic Composite Segmentation method(ABSCS)is proposed.This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances.It includes adaptively dividing and modifying the aerial images with the proposed principles and methods,using the deep learning method to semantic segment and preprocess the small divided pieces,using three traditional methods to segment and preprocess original-size aerial images,adaptively selecting traditional results tomodify the boundaries of individual objects in deep learning results,and combining the results of different objects.Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset,and their results are analyzed qualitatively and quantitatively.The experimental results demonstrate that the proposed method can achieve more promising object boundaries than the original deep learning method.This work also demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and image inpainting.
基金supported by Key R&D Project of Liaoning Province,under Grant Research and Demonstration of Key Technologies for Deep Processing and Comprehensive Utilization of Northeast Hazelnuts(2020JH2/10200037)Service Local Project of Liaoning Province,under Grant Demonstration and Promotion of new deep-processing technology for comprehensive utilization of Northeast Hazelnuts(LSNFW201903)horizontal subject,under Grant Demonstration and Promotion of key technologies for transformation and deep processing of wild hazelnut forest in northwestern Liaoning(H2019388)。
文摘Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processing methods.Here,we conducted a lipidomics analysis using UPLC-QTOF-MS to characterize the lipid composition of cold-pressed hazelnut oil(CPO),ultrasonic-assisted hexane hazelnut oil(UHO)and enzyme-assisted aqueous hazelnut oil(EAO).A total of 10 subclasses of 98 lipids were identified,including35 glycerolipids(GLs),56 glycerophospholipids(GPs)and 7 sphingolipids(SPs).The total lipid and GL content were the highest in CPO,GP content was the highest in UHO and the ceramide content in SPs was most abundant in EAO.Multivariate statistical analysis showed that the lipid profiles of hazelnut oil prepared with different processing methods varied.Twelve significantly different lipids(TAG 54:3,TAG 52:2,TAG54:4,TAG 54:2,TAG 52:3,TAG 54:5,DAG 36:2,DAG 36:4,DAG 36:3,PC 36:2,PA 36:2 and PE 36:3)were identified,and these lipids could potentially be used as biomarkers to distinguish between hazelnut oil subjected to different processing methods.Our results provide useful information for hazelnut oil applications and new insight into the effects of edible oil processing.
文摘In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
文摘A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.
文摘One of the most challenging factors affecting impression quality and good marginal fit is the gingival retraction method, which aims to separate the gingiva from the tooth to expose the finishing line of the prepared tooth. Bleeding and contamination from the crevicular fluid may compete for space with the impression material within the sulcus, leading to indistinct preparations and a lack of detail at the margin. In addition, such procedures might damage the PDL and cause permanent recession. Flowable composite cable, as opposed to traditional retraction cords, offers the proper marginal seal and visibility during the impression record because of its lower viscosity, improved adaptability, and elastic properties. The aim of this report is to present a brand-new, innovative method for controlling gingival hemorrhage in addition to the gingival retraction in restorative and prosthodontic treatment by utilizing a flowable composite during the final impression record procedure. In these case reports, the flowable composite cord technique is used instead of traditional gingival cords to modify and refine the gingival tissue before taking the traditional final impression or digital scan. Two cases were done for patients undergoing fixed prosthodontics and veneer treatment within a 2-year follow-up period. In addition, the flowable composite cord was used as temporary restoration before the final prosthetic cementation or under the provisional crowns. As a result, clean and healthy gingival tissues render cementation of the final prosthesis quicker and easier to perform. The patients in both cases claimed that their prosthodontic treatments, which involved the application of a flowable composite cord to temporarily retraction the gingiva, had produced good outcomes at the yearlong follow-up. In conclusion, the flowable composite cord technique is found to be a useful tool to improve the quality of impressions in fixed prosthodontics by providing excellent access for impression material to record fine details of the finish line of the prepared tooth structure, and to alter the inflamed tissue into a healthy tissue.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT,Korea (No. 2018R1A5A1025224 and No. 2019R1A2C1084020)this research received funding support from a grant from the Korea Planning&Evaluation Institute of Industrial Technology (KEIT),funded by the MOTIE of Korea (No. 10077287)。
文摘Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
文摘Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.
基金financially supported by polish project NR15 0001 06the Ministry of Higher Education and Science/AGH University of Science and Technology,Krakow,Poland,grant number 11.11.180.255 is greatly acknowledged.
文摘The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.