The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting...The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting adjustments.The objective of this study was to evaluate the performance of supervised classification algorithms such as support vector machine(SVM),random forest(RF),and artificial neural network(ANN)algorithms to identify locations that were infested or not infested with Fusarium wilt.An unmanned aerial vehicle(UAV)equipped with a five-band multi-spectral sensor(blue,green,red,red-edge and near-infrared bands)was used to capture the multi-spectral imagery.A total of 139 ground sample-sites were surveyed to assess the occurrence of banana Fusarium wilt.The results showed that the SVM,RF,and ANN algorithms exhibited good performance for identifying and mapping banana Fusarium wilt disease in UAV-based multi-spectral imagery.The overall accuracies of the SVM,RF,and ANN were 91.4%,90.0%,and 91.1%,respectively for the pixel-based approach.The RF algorithm required significantly less training time than the SVM and ANN algorithms.The maps generated by the SVM,RF,and ANN algorithms showed the areas of occurrence of Fusarium wilt disease were in the range of 5.21-5.75 hm2,accounting for 36.3%-40.1%of the total planting area of bananas in the study area.The results also showed that the inclusion of the red-edge band resulted in an increase in the overall accuracy of 2.9%-3.0%.A simulation of the resolutions of satellite-based imagery(i.e.,0.5 m,1 m,2 m,and 5 m resolutions)showed that imagery with a spatial resolution higher than 2 m resulted in good identification accuracy of Fusarium wilt.The results of this study demonstrate that the RF classifier is well suited for the identification and mapping of banana Fusarium wilt disease from UAV-based remote sensing imagery.The results provide guidance for disease treatment and crop planting adjustments.展开更多
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ...Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.展开更多
The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,te...Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.展开更多
Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts trad...Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.展开更多
Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new developme...Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new development direction of oil painting,and thus imagery oil painting came into being.Color,as the most important element in imagery oil painting,mainly plays the role of mood creation and emotional expression.Many creators are good at injecting their thoughts and emotions into the paintings through color matching,so as to enhance the artistic expression of the paintings.This paper analyzes the color expression characteristics of imagery oil painting and explores the color expression techniques in imagery oil painting and mood creation of imagery oil painting from several aspects.展开更多
Based on diverse landforms, the correlation between soil organic matter content and multi-spectral band of remote sensing image was analyzed in this pa- per. In addition, the inversion models were built for the soil o...Based on diverse landforms, the correlation between soil organic matter content and multi-spectral band of remote sensing image was analyzed in this pa- per. In addition, the inversion models were built for the soil organic matter content in different landforms. The results showed that the spectral reflectance was nega- tively related to soil organic matter content; linear regression analysis of remove was performed throughout the bands using SPSS. When the inversion models were built based on all the bands, better fitting effect was obtained. The precision of in- version models built based on different landforms was higher than those built re- gardless landforms. Compared with the actual value, the identification level of soil organic matter content was 91 65% under the allowable error was 7%. It indicated that the extraction of soil organic matter with inversion model that was built based on different landforrrs was feasible with higher precision.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] T...[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] The experiment, using multi-spectral imaging system, acquired the multi-spectral images of damaged rice leaves from band 400 to 720 nm by interval of 5 nm. [Result] According to the principle of band index, it was calculated that the bands at 515, 510, 710, 555, 630, 535, 505, 530 and 595 nm were having high band index value with rich information and little correlation. Furthermore, the experiment used two classification methods and calcu-lated the classification accuracy higher than 90.00% for feature bands and ful bands of damaged rice leaves by planthoppers respectively. [Conclusion] It can be con-cluded that these bands can be considered as effective feature bands to identify damaged rice leaves by planthoppers quickly from a large scale of crops.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso...Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.展开更多
To monitor growth and predict the yield of rice over a large area, the chlorophyll contents in the rice canopy were estimated using the unmanned aerial vehicle(UAV) remote sensing technology. In this work, multi-spect...To monitor growth and predict the yield of rice over a large area, the chlorophyll contents in the rice canopy were estimated using the unmanned aerial vehicle(UAV) remote sensing technology. In this work, multi-spectral image information of the rice crop was obtained using a 6-channel multi-spectral camera mounted on a fixed wing UAV, which was flown 600 m above the ground, between 11: 00-14: 00 on a sunny day in summer. The measured chlorophyll values were collected as sample sets. The s-REP index was screened out to estimate chlorophyll contents through the analysis of six kinds of spectral indexes of chlorophyll estimated capacity. An inversion model of the chlorophyll contents was then built using the least square support vector regression(LS-SVR)algorithm, with calibration and prediction R-square values of 0.89 and 0.83, respectively. Finally, remote sensing mapping for a UAV image of the Fangzheng County Dexter Rice Planting Park was accomplished using the inversion model. The inversion and measured values were then compared using regression fitting. R-square and root-mean-square error of the fitting model were 0.79 and 2.39,respectively. The results demonstrated that accurate estimation of rice-canopy chlorophyll contents was feasible using the LS-SVR inversion model developed using the s-REP vegetation index.展开更多
Evaluation of the impact of herbicides on maize was done through multi- spectral and multi-modal imaging and multi-spectral fluorescence imaging combined with statistical methods. Spectra containing 13 wavelengths ran...Evaluation of the impact of herbicides on maize was done through multi- spectral and multi-modal imaging and multi-spectral fluorescence imaging combined with statistical methods. Spectra containing 13 wavelengths ranging from 375 nm to 940 nm were derived from multi-spectral images in transmission, reflection and scattering mode and fluorescence images obtained using high-pass filters (F450 nm, F500 nm, F550 nm, F600 nm, F650 nm) on control maize samples and maize samples treated with Herbextra herbicide were used. The appearance of the spectra allowed us to characterize the effect of the herbicide on the maize pigment concentration. The fluorescence images allowed us to track the fate of absorbed energy and through PLS-DA and SVM-DA to discriminate the two leaf categories with very low error rates for the test, i.e. 4.9% and 2% respectively. The results of this technique can be used in the context of precision agriculture.展开更多
BACKGROUND Rehabilitation nursing is considered an indispensable part of the cerebral infarction treatment system.The hospital–community–family trinity rehabilitation nursing model can provide continuous nursing ser...BACKGROUND Rehabilitation nursing is considered an indispensable part of the cerebral infarction treatment system.The hospital–community–family trinity rehabilitation nursing model can provide continuous nursing services across hospitals,communities,and families for patients.AIM To explore the application of a hospital–community–family rehabilitation nursing model combined with motor imagery therapy in patients with cerebral infarction.METHODS From January 2021 to December 2021,88 patients with cerebral infarction were divided into a study(n=44)and a control(n=44)group using a simple random number table.The control group received routine nursing and motor imagery therapy.The study group was given hospital–community–family trinity rehabilitation nursing based on the control group.Motor function(FMA),balance ability(BBS),activities of daily living(BI),quality of life(SS-QOL),activation status of the contralateral primary sensorimotor cortical area to the affected side,and nursing satisfaction were evaluated before and after intervention in both groups.RESULTS Before intervention,FMA and BBS were similar(P>0.05).After 6 months’intervention,FMA and BBS were significantly higher in the study than in the control group(both P<0.05).Before intervention,BI and SS-QOL scores were not different between the study and control group(P>0.05).However,after 6months’intervention,BI and SS-QOL were higher in the study than in the control group(P<0.05).Before intervention,activation frequency and volume were similar between the study and the control group(P>0.05).After 6 months’intervention,the activation frequency and volume were higher in the study than in the control group(P<0.05).The reliability,empathy,reactivity,assurance,and tangibles scores for quality of nursing service were higher in the study than in the control group(P<0.05).CONCLUSION Combining a hospital–community–family trinity rehabilitation nursing model and motor imagery therapy enhances the motor function and balance ability of patients with cerebral infarction,improving their quality of life.展开更多
Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectr...Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectral Pap smear is proposed in this thesis, on the basis of multi-spectral microscopic imaging technology and computer automotive recognition technology. At first, image in a specific wave band is segmented according to the relationship between intensity and spectrum of each pixel. Then, multi-spectral features of each pixel are extracted making use of improved cosine correlation analysis (CCA) algorithm. Combined with the characteristic of each cell's area, final definition is made. Experiments have proved the new approach could identify abnormal cells efficiently as well as lower FNR and FPR.展开更多
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ...Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.展开更多
The accurate and rapid estimation of canopy nitrogen content(CNC)in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture.However,the determination of CNC from field samplin...The accurate and rapid estimation of canopy nitrogen content(CNC)in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture.However,the determination of CNC from field sampling data for leaf area index(LAI),canopy photosynthetic pigments(CPP;including chlorophyll a,chlorophyll b and carotenoids)and leaf nitrogen concentration(LNC)can be time-consuming and costly.Here we evaluated the use of high-precision unmanned aerial vehicle(UAV)multispectral imagery for estimating the LAI,CPP and CNC of winter wheat over the whole growth period.A total of 23 spectral features(SFs;five original spectrum bands,17 vegetation indices and the gray scale of the RGB image)and eight texture features(TFs;contrast,entropy,variance,mean,homogeneity,dissimilarity,second moment,and correlation)were selected as inputs for the models.Six machine learning methods,i.e.,multiple stepwise regression(MSR),support vector regression(SVR),gradient boosting decision tree(GBDT),Gaussian process regression(GPR),back propagation neural network(BPNN)and radial basis function neural network(RBFNN),were compared for the retrieval of winter wheat LAI,CPP and CNC values,and a double-layer model was proposed for estimating CNC based on LAI and CPP.The results showed that the inversion of winter wheat LAI,CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs.The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI,CPP and CNC.The proposed double-layer models(R^(2)=0.67-0.89,RMSE=13.63-23.71 mg g^(-1),MAE=10.75-17.59 mg g^(-1))performed better than the direct inversion models(R^(2)=0.61-0.80,RMSE=18.01-25.12 mg g^(-1),MAE=12.96-18.88 mg g^(-1))in estimating winter wheat CNC.The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs(R^(2)=0.89,RMSE=13.63 mg g^(-1),MAE=10.75 mg g^(-1)).The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.展开更多
Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution rem...Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.展开更多
基金This research was funded by the Hainan Provincial Key R&D Program of China(ZDYF2018073)National Natural Science Foundation of China(41571354)+2 种基金Hainan Provincial Major Science and Technology Program of China(ZDKJ2019006)Agricultural Science and Technology Innovation of Sanya,China(2016NK16)National Special Support Program for High-level Personnel Recruitment(Ten-thousand Talents Program)(Wenjiang Huang),Innovation Foundation of Director of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences.We also gratefully acknowledge the National Meteorological Information Center of China,Guangxi Jiejiarun Technology Co.,Ltd.and Guangxi Jinsui Agriculture Group Co.,Ltd.for the experiments.
文摘The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting adjustments.The objective of this study was to evaluate the performance of supervised classification algorithms such as support vector machine(SVM),random forest(RF),and artificial neural network(ANN)algorithms to identify locations that were infested or not infested with Fusarium wilt.An unmanned aerial vehicle(UAV)equipped with a five-band multi-spectral sensor(blue,green,red,red-edge and near-infrared bands)was used to capture the multi-spectral imagery.A total of 139 ground sample-sites were surveyed to assess the occurrence of banana Fusarium wilt.The results showed that the SVM,RF,and ANN algorithms exhibited good performance for identifying and mapping banana Fusarium wilt disease in UAV-based multi-spectral imagery.The overall accuracies of the SVM,RF,and ANN were 91.4%,90.0%,and 91.1%,respectively for the pixel-based approach.The RF algorithm required significantly less training time than the SVM and ANN algorithms.The maps generated by the SVM,RF,and ANN algorithms showed the areas of occurrence of Fusarium wilt disease were in the range of 5.21-5.75 hm2,accounting for 36.3%-40.1%of the total planting area of bananas in the study area.The results also showed that the inclusion of the red-edge band resulted in an increase in the overall accuracy of 2.9%-3.0%.A simulation of the resolutions of satellite-based imagery(i.e.,0.5 m,1 m,2 m,and 5 m resolutions)showed that imagery with a spatial resolution higher than 2 m resulted in good identification accuracy of Fusarium wilt.The results of this study demonstrate that the RF classifier is well suited for the identification and mapping of banana Fusarium wilt disease from UAV-based remote sensing imagery.The results provide guidance for disease treatment and crop planting adjustments.
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
基金funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
文摘Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.
文摘Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.
文摘Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new development direction of oil painting,and thus imagery oil painting came into being.Color,as the most important element in imagery oil painting,mainly plays the role of mood creation and emotional expression.Many creators are good at injecting their thoughts and emotions into the paintings through color matching,so as to enhance the artistic expression of the paintings.This paper analyzes the color expression characteristics of imagery oil painting and explores the color expression techniques in imagery oil painting and mood creation of imagery oil painting from several aspects.
文摘Based on diverse landforms, the correlation between soil organic matter content and multi-spectral band of remote sensing image was analyzed in this pa- per. In addition, the inversion models were built for the soil organic matter content in different landforms. The results showed that the spectral reflectance was nega- tively related to soil organic matter content; linear regression analysis of remove was performed throughout the bands using SPSS. When the inversion models were built based on all the bands, better fitting effect was obtained. The precision of in- version models built based on different landforms was higher than those built re- gardless landforms. Compared with the actual value, the identification level of soil organic matter content was 91 65% under the allowable error was 7%. It indicated that the extraction of soil organic matter with inversion model that was built based on different landforrrs was feasible with higher precision.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
基金Supported by National Natural Science Foundation of China under Grant(No.60968001,61168003)Natural Science Foundation of Yunnan Province under Grant(No.2011FZ079,2009CD047)National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant(No.201210681005,201310681004)~~
文摘[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] The experiment, using multi-spectral imaging system, acquired the multi-spectral images of damaged rice leaves from band 400 to 720 nm by interval of 5 nm. [Result] According to the principle of band index, it was calculated that the bands at 515, 510, 710, 555, 630, 535, 505, 530 and 595 nm were having high band index value with rich information and little correlation. Furthermore, the experiment used two classification methods and calcu-lated the classification accuracy higher than 90.00% for feature bands and ful bands of damaged rice leaves by planthoppers respectively. [Conclusion] It can be con-cluded that these bands can be considered as effective feature bands to identify damaged rice leaves by planthoppers quickly from a large scale of crops.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
文摘Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.
基金Supported by the National Key R&D Program of China(2016YFD0300610)
文摘To monitor growth and predict the yield of rice over a large area, the chlorophyll contents in the rice canopy were estimated using the unmanned aerial vehicle(UAV) remote sensing technology. In this work, multi-spectral image information of the rice crop was obtained using a 6-channel multi-spectral camera mounted on a fixed wing UAV, which was flown 600 m above the ground, between 11: 00-14: 00 on a sunny day in summer. The measured chlorophyll values were collected as sample sets. The s-REP index was screened out to estimate chlorophyll contents through the analysis of six kinds of spectral indexes of chlorophyll estimated capacity. An inversion model of the chlorophyll contents was then built using the least square support vector regression(LS-SVR)algorithm, with calibration and prediction R-square values of 0.89 and 0.83, respectively. Finally, remote sensing mapping for a UAV image of the Fangzheng County Dexter Rice Planting Park was accomplished using the inversion model. The inversion and measured values were then compared using regression fitting. R-square and root-mean-square error of the fitting model were 0.79 and 2.39,respectively. The results demonstrated that accurate estimation of rice-canopy chlorophyll contents was feasible using the LS-SVR inversion model developed using the s-REP vegetation index.
文摘Evaluation of the impact of herbicides on maize was done through multi- spectral and multi-modal imaging and multi-spectral fluorescence imaging combined with statistical methods. Spectra containing 13 wavelengths ranging from 375 nm to 940 nm were derived from multi-spectral images in transmission, reflection and scattering mode and fluorescence images obtained using high-pass filters (F450 nm, F500 nm, F550 nm, F600 nm, F650 nm) on control maize samples and maize samples treated with Herbextra herbicide were used. The appearance of the spectra allowed us to characterize the effect of the herbicide on the maize pigment concentration. The fluorescence images allowed us to track the fate of absorbed energy and through PLS-DA and SVM-DA to discriminate the two leaf categories with very low error rates for the test, i.e. 4.9% and 2% respectively. The results of this technique can be used in the context of precision agriculture.
基金Supported by the Key Research and Development Programs of Shaanxi Province,No.2021SF-059。
文摘BACKGROUND Rehabilitation nursing is considered an indispensable part of the cerebral infarction treatment system.The hospital–community–family trinity rehabilitation nursing model can provide continuous nursing services across hospitals,communities,and families for patients.AIM To explore the application of a hospital–community–family rehabilitation nursing model combined with motor imagery therapy in patients with cerebral infarction.METHODS From January 2021 to December 2021,88 patients with cerebral infarction were divided into a study(n=44)and a control(n=44)group using a simple random number table.The control group received routine nursing and motor imagery therapy.The study group was given hospital–community–family trinity rehabilitation nursing based on the control group.Motor function(FMA),balance ability(BBS),activities of daily living(BI),quality of life(SS-QOL),activation status of the contralateral primary sensorimotor cortical area to the affected side,and nursing satisfaction were evaluated before and after intervention in both groups.RESULTS Before intervention,FMA and BBS were similar(P>0.05).After 6 months’intervention,FMA and BBS were significantly higher in the study than in the control group(both P<0.05).Before intervention,BI and SS-QOL scores were not different between the study and control group(P>0.05).However,after 6months’intervention,BI and SS-QOL were higher in the study than in the control group(P<0.05).Before intervention,activation frequency and volume were similar between the study and the control group(P>0.05).After 6 months’intervention,the activation frequency and volume were higher in the study than in the control group(P<0.05).The reliability,empathy,reactivity,assurance,and tangibles scores for quality of nursing service were higher in the study than in the control group(P<0.05).CONCLUSION Combining a hospital–community–family trinity rehabilitation nursing model and motor imagery therapy enhances the motor function and balance ability of patients with cerebral infarction,improving their quality of life.
基金Supported by Key Project of the Tenth Five-Year Plan of the Ministry of Science and Technology of China (2001BA210A02)
文摘Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectral Pap smear is proposed in this thesis, on the basis of multi-spectral microscopic imaging technology and computer automotive recognition technology. At first, image in a specific wave band is segmented according to the relationship between intensity and spectrum of each pixel. Then, multi-spectral features of each pixel are extracted making use of improved cosine correlation analysis (CCA) algorithm. Combined with the characteristic of each cell's area, final definition is made. Experiments have proved the new approach could identify abnormal cells efficiently as well as lower FNR and FPR.
基金funded by the Natural Science Foundation of Fujian Province(No.2018J01063)the Project of Deep Learning Based Underwater Cultural Relics Recognization(No.38360041)the Project of the State Administration of Cultural Relics(No.2018300).
文摘Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.
基金funded by the Key Research and Development Program of Shaanxi Province of China(2022NY-063)the Chinese Universities Scientific Fund(2452020018).
文摘The accurate and rapid estimation of canopy nitrogen content(CNC)in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture.However,the determination of CNC from field sampling data for leaf area index(LAI),canopy photosynthetic pigments(CPP;including chlorophyll a,chlorophyll b and carotenoids)and leaf nitrogen concentration(LNC)can be time-consuming and costly.Here we evaluated the use of high-precision unmanned aerial vehicle(UAV)multispectral imagery for estimating the LAI,CPP and CNC of winter wheat over the whole growth period.A total of 23 spectral features(SFs;five original spectrum bands,17 vegetation indices and the gray scale of the RGB image)and eight texture features(TFs;contrast,entropy,variance,mean,homogeneity,dissimilarity,second moment,and correlation)were selected as inputs for the models.Six machine learning methods,i.e.,multiple stepwise regression(MSR),support vector regression(SVR),gradient boosting decision tree(GBDT),Gaussian process regression(GPR),back propagation neural network(BPNN)and radial basis function neural network(RBFNN),were compared for the retrieval of winter wheat LAI,CPP and CNC values,and a double-layer model was proposed for estimating CNC based on LAI and CPP.The results showed that the inversion of winter wheat LAI,CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs.The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI,CPP and CNC.The proposed double-layer models(R^(2)=0.67-0.89,RMSE=13.63-23.71 mg g^(-1),MAE=10.75-17.59 mg g^(-1))performed better than the direct inversion models(R^(2)=0.61-0.80,RMSE=18.01-25.12 mg g^(-1),MAE=12.96-18.88 mg g^(-1))in estimating winter wheat CNC.The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs(R^(2)=0.89,RMSE=13.63 mg g^(-1),MAE=10.75 mg g^(-1)).The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.
基金the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2022YFS0539)the Geomatics Technology and Application Key Laboratory of Qinghai Province,China(QHDX-2018-07).
文摘Traditional visual interpretation is often inefficient due to its excessively workload professional knowledge and strong subjectivity.Therefore,building an automatic interpretation model on high spatial resolution remote sensing images is the key to the quick and efficient interpretation of earthquake-triggered landslides.Aiming at addressing this problem,a landslide interpretation model of high-resolution images based on bag of visual word(BoVW)feature was proposed.The high-resolution images were pre-processed,and then BoVW feature and support vector machine(SVM)was adopted to establish an automatic landslide interpretation model.This model was further compared with the currently widely used Histogram of Oriented Gradient(HoG)feature extraction model.In order to test the effectiveness of the method,typical landslide images were selected to construct a landslide sample library,which was subsequently utilized as the foundation for conducting an experimental study.The results show that the accuracy of landslide extraction using this method reaches as high as 89%,indicating that the method can be used for the automatic interpretation of landslides in disaster-prone areas,and has high practical value for regional disaster prevention and damage reduction.