期刊文献+
共找到3,665篇文章
< 1 2 184 >
每页显示 20 50 100
Microwave-induced thermoacoustic elastic imaging:A simulation study 被引量:1
1
作者 Lin Huang Zheng Liang +1 位作者 Shuaiqi Qiao Weipeng Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期1-11,共11页
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ... Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE). 展开更多
关键词 Thermoacoustic imaging breast cancer multi-physics simulation elastic imaging
下载PDF
Geant4 simulation of fast-electron bremsstrahlung imaging at the HL-3 tokamak
2
作者 Shi-Kui Cheng Yi-Po Zhang +4 位作者 Yue-Jiang Shi Jie Zhang Shuai Guan Hong-Bing Xu Qiu-Lei Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期213-229,共17页
To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-... To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system. 展开更多
关键词 GEANT4 simulation HL-3 TOKAMAK Fast-electron bremsstrahlung Hard X-ray imaging
下载PDF
Imaging simulation and analysis of attitude jitter effect on topographic mapping for lunar orbiter stereo optical cameras
3
作者 CHEN Chen TONG Xiao-Hua +4 位作者 LIU Shi-Jie YE Zhen HUANG Chao-Wei WU Hao ZHANG Han 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第5期722-730,共9页
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m... The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison. 展开更多
关键词 topographic mapping lunar orbiter stereo camera attitude jitter imaging simulation digital elevation model
下载PDF
Simulation of Quantum Noise in the Low-Light-Level Imaging System 被引量:3
4
作者 邹正峰 芦汉生 +1 位作者 白廷柱 高稚允 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期186-190,共5页
A mathematical model of quantum noise having much effect on the low light imaging system is set up. To simulate the quantum noise, the random numbers obeying noise distribution must be formed and are weighted on the... A mathematical model of quantum noise having much effect on the low light imaging system is set up. To simulate the quantum noise, the random numbers obeying noise distribution must be formed and are weighted on the basis of the model created. Three uniform random sequences are built by the linear congruential method, of which two are used to form integer number and decimal fraction parts of the new random sequence respectively and the third to shuffle the new sequence. And then a Gauss sequence is formed out of uniform distribution by a function transforming method. It actualizes the simulation in real time of quantum noise in the low light imaging system, where video flow is extracted in real time, the noise summed up and played back side by side with the original video signs by a simulation software. 展开更多
关键词 simulation quantum noises low light level imaging
下载PDF
Numerical simulation scattered imaging in deep mines 被引量:1
5
作者 胡明顺 潘冬明 李娟娟 《Applied Geophysics》 SCIE CSCD 2010年第3期272-282,294,共12页
Conventional seismic exploration,mostly based on reflection theory,hardly has accurate imaging results for disaster geologic bodies which have small scale,steep dip,or complex structure.In this paper,we design two typ... Conventional seismic exploration,mostly based on reflection theory,hardly has accurate imaging results for disaster geologic bodies which have small scale,steep dip,or complex structure.In this paper,we design two typical geologic models for analyzing the characteristics of scattered waves in mines for forward modeling by finite difference and apply the equivalent offset migration(EOM)and EOM-based interference stack migration methods to mine prospecting.We focus on the analysis of scatted imaging’s technological superiority to reflection imaging.Research shows:1)scattered imaging can improve fold and make the best of weak scattered information,so it shows better results than post-stack migration imaging and 2)it can utilize the diffraction stack migration method-based ray path theory for mine seismic advanced prediction,so it provides an new efficient imaging method for improving resolution of mine seismic exploration. 展开更多
关键词 MINE seismic exploration scattered wave seismic imaging numerical simulation
下载PDF
Extracting Feature Bands for Damaged Rice Leaves by Planthoppers Using Multi-spectral Imaging Technology
6
作者 曹鹏飞 李宏宁 +2 位作者 杨卫平 林立波 冯洁 《Agricultural Science & Technology》 CAS 2013年第11期1642-1645,1669,共5页
[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] T... [Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] The experiment, using multi-spectral imaging system, acquired the multi-spectral images of damaged rice leaves from band 400 to 720 nm by interval of 5 nm. [Result] According to the principle of band index, it was calculated that the bands at 515, 510, 710, 555, 630, 535, 505, 530 and 595 nm were having high band index value with rich information and little correlation. Furthermore, the experiment used two classification methods and calcu-lated the classification accuracy higher than 90.00% for feature bands and ful bands of damaged rice leaves by planthoppers respectively. [Conclusion] It can be con-cluded that these bands can be considered as effective feature bands to identify damaged rice leaves by planthoppers quickly from a large scale of crops. 展开更多
关键词 Feature bands multi-spectral imaging Damaged rice leaves Planthop-pers Classification accuracy
下载PDF
Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology
7
作者 Safwan Al-sayed Xi Wang Yijiang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4169-4195,共27页
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a... The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis. 展开更多
关键词 Digital image processing lightweight aggregate concrete mesoscopic model numerical simulation fracture analysis bending beams
下载PDF
SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR 被引量:2
8
作者 WangAiming ZhuMinhui 《Journal of Electronics(China)》 2004年第1期64-71,共8页
Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulen... Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters. 展开更多
关键词 Turbulent and vortical wake SAR imaging simulation
下载PDF
Computer Simulation/Practical Models for Human Thyroid Thermographic Imaging 被引量:1
9
作者 James Rizkalla William Tilbury +3 位作者 Ahdy Helmy Vinay Kumar Suryadevara Maher Rizkalla Michael M. Holdmann 《Journal of Biomedical Science and Engineering》 2015年第4期246-256,共11页
We have demonstrated a successful computer model utilizing ANSIS software that is verified with a practical model using Infrared (IR) sensors. The simulation model incorporates the three heat transfer coefficients: co... We have demonstrated a successful computer model utilizing ANSIS software that is verified with a practical model using Infrared (IR) sensors. The simulation model incorporates the three heat transfer coefficients: conduction, convection, and radiation. While the conduction component was a major contributor to the simulation model, the other two coefficients have added to the accuracy and precision of the model. Convection heat allows for the influence of blood flow within the study, while the radiation aspect, sensed through IR sensors, links the practical model of the study. This study also compares simulation data with the applied model generated from IR probe sensors. These sensors formed an IR scanner that moved via servo mechanical system, tracking the temperature distribution within and around the thyroid gland. These data were analyzed and processed to produce a thermal image of the thyroid gland. The acquired data were then compared with an Iodine uptake scan for the same patients. 展开更多
关键词 THYROID THERMOGRAPHY COMPUTER simulation imaging PRACTICAL Model IR SENSORS
下载PDF
Multi-Spectral and Fluorescence Imaging in Prevention of Overdose of Herbicides: The Case of Maize 被引量:1
10
作者 Anicet K. Kouakou Adama P. Soro +1 位作者 Alvarez K. Taky Jérémie T. Zoueu 《Spectral Analysis Review》 2017年第2期11-24,共14页
Evaluation of the impact of herbicides on maize was done through multi- spectral and multi-modal imaging and multi-spectral fluorescence imaging combined with statistical methods. Spectra containing 13 wavelengths ran... Evaluation of the impact of herbicides on maize was done through multi- spectral and multi-modal imaging and multi-spectral fluorescence imaging combined with statistical methods. Spectra containing 13 wavelengths ranging from 375 nm to 940 nm were derived from multi-spectral images in transmission, reflection and scattering mode and fluorescence images obtained using high-pass filters (F450 nm, F500 nm, F550 nm, F600 nm, F650 nm) on control maize samples and maize samples treated with Herbextra herbicide were used. The appearance of the spectra allowed us to characterize the effect of the herbicide on the maize pigment concentration. The fluorescence images allowed us to track the fate of absorbed energy and through PLS-DA and SVM-DA to discriminate the two leaf categories with very low error rates for the test, i.e. 4.9% and 2% respectively. The results of this technique can be used in the context of precision agriculture. 展开更多
关键词 MAIZE Herbextra multi-spectral imaging Multimodal imaging FLUORESCENCE PLS-DA SVM-DA
下载PDF
Investigation of Noise-Resolution Tradeoff for Digital Radiographic Imaging: A Simulation Study 被引量:1
11
作者 Eri Matsuyama Du-Yih Tsai +1 位作者 Yongbum Lee Katsuyuki Kojima 《Journal of Software Engineering and Applications》 2010年第10期926-932,共7页
In digital radiographic systems, a tradeoff exists between image resolution (or blur) and noise characteristics. An imaging system may only be superior in one image quality characteristic while being inferior to anoth... In digital radiographic systems, a tradeoff exists between image resolution (or blur) and noise characteristics. An imaging system may only be superior in one image quality characteristic while being inferior to another in the other characteristic. In this work, a computer simulation model is presented that is to use mutual-information (MI) metric to examine tradeoff behavior between resolution and noise. MI is used to express the amount of information that an output image contains about an input object. The basic idea is that when the amount of the uncertainty associated with an object before and after imaging is reduced, the difference of the uncertainty is equal to the value of MI. The more the MI value provides, the better the image quality is. The simulation model calculated MI as a function of signal-to-noise ratio and that of resolution for two image contrast levels. Our simulation results demonstrated that MI associated with overall image quality is much more sensitive to noise compared to blur, although tradeoff relationship between noise and blur exists. However, we found that overall image quality is primarily determined by image blur at very low noise levels. 展开更多
关键词 Modeling and simulation MEDICAL imaging imagE QUALITY Evaluation Mutual Information
下载PDF
Atomic scale imaging of monocrystalline Si (001) surface by molecular dynamic simulation
12
作者 窦建华 梁迎春 +2 位作者 白清顺 宫娜 董申 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期879-883,共5页
Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuh... Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuhs show that the nc-AFM imaging force mainly comes from the C-Si and C-C chemical covalent bonding forces, especially the former, the nonbonding Van der Waals force change is small during the range of stable imaging height. When the tip-surface distance is smaller than the stable imaging height, several neighboring carbon atoms at the tip apex are attracted, and some of them jump onto the sample surface. Finally the tip apex configuration is destroyed with the tip indenting further. 展开更多
关键词 molecular dynamic simulation carbon nanotube imaging non-contact AFM
下载PDF
Imaging performance evaluation in depth-of-interaction PET with a new method of sinogram generation:A Monte Carlo simulation study 被引量:1
13
作者 XIA Yan MA Tianyu +3 位作者 LIU Yaqiang SUN Xishan WANG Shi SHAO Yiping 《Nuclear Science and Techniques》 SCIE CAS CSCD 2011年第3期144-150,共7页
In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore ... In conventional PET systems,the parallax error degrades image resolution and causes image distortion.To remedy this,a PET ring diameter has to be much larger than the required size of field of view(FOV),and therefore the cost goes up.Measurement of depth-of-interaction(DOI)information is effective to reduce the parallax error and improve the image quality.This study is aimed at developing a practical method to incorporate DOI information in PET sinogram generation and image reconstruction processes and evaluate its efficacy through Monte Carlo simulation.An animal PET system with 30-mm long LSO crystals and 2-mm DOI measurement accuracy was simulated and list-mode PET data were collected.A sinogram generation method was proposed to bin each coincidence event to the correct LOR location according to both incident crystal indices and DOI positions of the two annihilation photons.The sinograms were reconstructed with an iterative OSMAPEM(ordered subset maximum a posteriori expectation maximization)algorithm.Two phantoms(a rod source phantom and a Derenzo phantom)were simulated,and the benefits of DOI were investigated in terms of reconstructed source diameter(FWHM)and source positioning accuracy.The results demonstrate that the proposed method works well to incorporate DOI information in data processing,which not only overcomes the image distortion problem but also significantly improves image resolution and resolution uniformity and results in satisfactory image quality. 展开更多
关键词 蒙特卡罗模拟 PET 性能评价 图像分辨率 LSO晶体 成像 图像失真 图像质量
下载PDF
Application Research of Medical Imaging Practical Teaching Based on Virtual Simulation Teaching Platform
14
作者 Yong Zhou Wenbo Jing +3 位作者 Cheng Zhou Yingying Yu Xiaojing Gan Xiaoyan Xu 《Journal of Contemporary Educational Research》 2023年第5期33-38,共6页
Objective:To explore the application effect of virtual simulation teaching platform in the practical teaching of medical imaging.Methods:A total of 97 students majoring in medical imaging technology of class 2022 were... Objective:To explore the application effect of virtual simulation teaching platform in the practical teaching of medical imaging.Methods:A total of 97 students majoring in medical imaging technology of class 2022 were selected and divided into two groups according to the random number method:control group(n=48)and observation group(n=49).The observation group was under the practical teaching mode based on the virtual simulation teaching platform,while the control group was under the traditional multimedia teaching mode.Questionnaire survey and teaching assessment were carried out after the teaching period,and the application effects of the two teaching modes were compared.Results:The reading and theoretical scores of the students in the observation group were significantly higher than those of the students in the control group(P<0.01);there were statistically significant differences in the results of the questionnaire survey(improved learning interest,improved language expression,improved ability to comprehensively analyze problems,and improved teamwork awareness)between the two groups of students(P<0.05);the students in the observation group were markedly more satisfied with the teaching content,teaching methods,and teaching quality than the students in the control group(P<0.05).Conclusion:The medical imaging practical teaching mode based on virtual simulation platform not only helps improve students’theoretical understanding and practical ability in medical imaging technology,but also improves students’learning interest,language expression ability,ability to comprehensively analyze problems,communication skills,teamwork awareness,and satisfaction with the teaching content,teaching methods,and teaching quality.Therefore,it has wide application value in medical specialty education. 展开更多
关键词 Medical imaging Virtual simulation Practical teaching Problem-oriented
下载PDF
Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath 被引量:2
15
作者 Jin Guo TianRan Sun +6 位作者 San Lu QuanMing Lu Yu Lin XueYi Wang Chi Wang RongSheng Wang Kai Huang 《Earth and Planetary Physics》 EI CSCD 2024年第1期47-58,共12页
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ... Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered. 展开更多
关键词 MAGNETOPAUSE X-ray emissivity X-ray imaging SMILE global hybrid-PIC simulation
下载PDF
MULTI-SPECTRAL AND HYPERSPECTRAL IMAGE FUSION USING 3-D WAVELET TRANSFORM 被引量:5
16
作者 Zhang Yifan He Mingyi 《Journal of Electronics(China)》 2007年第2期218-224,共7页
Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso... Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly. 展开更多
关键词 image fusion 3-Dimensional (3-D) wavelet transform multi-spectral HYPERSPECTRAL
下载PDF
Robust key point descriptor for multi-spectral image matching 被引量:3
17
作者 Yueming Qin Zhiguo Cao +1 位作者 Wen Zhuo Zhenghong Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期681-687,共7页
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile... Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors. 展开更多
关键词 collinear gradient-enhanced coding (CGEC) key pointdescriptor multi-spectral image matching.
下载PDF
Simulation and experimental comparison of the performance of four-corner-readout plastic scintillator muon-detector system
18
作者 Lie He Si-Yuan Luo +5 位作者 Xiang-Man Liu Yu-Cheng Zou Hai-Feng Zhang Wan-Cheng Xiao Yu-He Huang Xiao-Dong Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期1-12,共12页
Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The dete... Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications. 展开更多
关键词 Monte Carlo simulation Muon tomography TDOA Machine learning image reconstruction
下载PDF
Experimental Study on the Variation of Optical Imaging Characteristics with Zenith Angle due to Internal Solitary Waves in Sunglint
19
作者 LIU Tengfei SUN Lina +4 位作者 CHANG Zhe ZHANG Meng LIANG Keda MENG Junmin WANG Jing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期943-952,共10页
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc... Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result. 展开更多
关键词 internal solitary waves optical imaging characteristic laboratory simulation zenith angle sunglint
下载PDF
High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
20
作者 赵旭彤 何飞越 +5 位作者 薛雅文 马文豪 殷筱晗 夏圣开 曾明菁 杜关祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期720-727,共8页
Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr... Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited. 展开更多
关键词 banknote anti-counterfeiting strip nitrogen-vacancy(NV)centers magnetic field imaging numerical simulation
下载PDF
上一页 1 2 184 下一页 到第
使用帮助 返回顶部