The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third...The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simula...A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simulation results of processing point target echocs show that the algorithm developed in this paper can give more accurate image especially in the case of large squint angle.展开更多
The mathematical model of spaceborne SAR systems and its computer simulationsare described. Results of computer simulations about range migration, range migration correction,azimuth weighting and signal generation/pro...The mathematical model of spaceborne SAR systems and its computer simulationsare described. Results of computer simulations about range migration, range migration correction,azimuth weighting and signal generation/processing are given. This software can be used tosimulate the dynamic processes in spaceborne SAR systems, to develop new signal processingtechniques and to evaluate the performance of the designed system.展开更多
Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circ...Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.展开更多
基金This work was supported by the General Design Department,China Academy of Space Technology(10377).
文摘The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.
文摘A new Chirp Scaling algorithm for spaceborne synthetic aperture radar(SAR) with large squint angle is presented and compared with the Range-Doppler algorithm and the algorithm in literatur [6] in the paper. The simulation results of processing point target echocs show that the algorithm developed in this paper can give more accurate image especially in the case of large squint angle.
文摘The mathematical model of spaceborne SAR systems and its computer simulationsare described. Results of computer simulations about range migration, range migration correction,azimuth weighting and signal generation/processing are given. This software can be used tosimulate the dynamic processes in spaceborne SAR systems, to develop new signal processingtechniques and to evaluate the performance of the designed system.
基金supported in part by the National Key Research and Development Program of China(No.SQ2022YFB 3900055)in part by the National Natural Science Foundation of China(No.62101039)+1 种基金in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.