Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,w...Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,while shortening the charging time.This in turn affects the safety of the charging process.Furthermore,the higher charging currents are not ideal for shortening the charging time in the later stages of charging.To solve the aforementioned problems,in this study,a multi-stage constant current charging strategy is presented.This strategy can shorten the battery charging time by using the increase in battery temperature during the charging process as a constraint,using a genetic algorithm to calculate the charging current value,and investigating the phased approach to charging.Finally,the charging strategy is experimentally validated at different ambient temperatures and different initial SOCs.The experimental results show that the charging strategy proposed in this paper not only reduces the amount of calculations,but also reduces the temperature rise by up to 46.4%and charging time by up to 4.2%under different operating conditions.展开更多
In field emission under a non-dc voltage, a displacement current is inevitable due to charging the cathode–anode condenser. Under an often-used square voltage pulse, in which the voltage rises from zero to a certain ...In field emission under a non-dc voltage, a displacement current is inevitable due to charging the cathode–anode condenser. Under an often-used square voltage pulse, in which the voltage rises from zero to a certain value abruptly, the charging current in the circuit is very large at the rising and falling edges. This large charging current makes measurement of the actual emissive current from the cathode difficult, constitutes a threat to the components in the circuit and causes attenuation of the emissive current within the pulse. To alleviate these drawbacks, trapezoid voltage pulses, whose rising edges are extended dramatically in comparison with square voltage pulses, are employed to extract the field emission. Under a trapezoid voltage pulse, the charging current is clearly lowered as expected. Furthermore, the heat generated by the charging current under the trapezoid voltage pulse is much smaller than that under the square voltage pulse. Hence the emissive current does not show any attenuation within the pulse. Finally, the average emissive currents are found to decrease with the repetition frequency of the pulses.展开更多
A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technolo...A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.展开更多
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the...To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.展开更多
In the micro-grid photovoltaic systems, the random changes of solar radiation enable lead-acid batteries to experience low SOC (State of Charge) or overcharged for periods of time if directly charged with such traditi...In the micro-grid photovoltaic systems, the random changes of solar radiation enable lead-acid batteries to experience low SOC (State of Charge) or overcharged for periods of time if directly charged with such traditional methods as decreased charging current, which will reduce lifetime of batteries. What’s more, it’s difficult to find a proper reduction coefficient in decreasing charging current. To adapt to the random changes of circumstance and avoid selecting the reduction coefficient, a new fast charging method named decreased charging current based on SOC is proposed to apply into micro-grid photovoltaic systems. It combines batteries’ SOC with the maximum charging voltage to determine the charging rate without strictly selecting reduction coefficient. By close-loop current control strategy and related scheme, the experiment proves the new method is feasible and verifies that, comparing with decreased charging current, the improved method make batteries’ SOC reach 100% in shorter time as well as the temperature of batteries raise more slowly.展开更多
A two-dimensional solution of space-charge-limiting current for a high current vacuum diode with a spherical cathode is presented. The relation between space-charge-limiting current and electric field enhancement fact...A two-dimensional solution of space-charge-limiting current for a high current vacuum diode with a spherical cathode is presented. The relation between space-charge-limiting current and electric field enhancement factor at the cathode surface for the diode with a curved surface cathode is also discussed. It is shown that compared with the current given by the conventional Child-Langmuir law, which describes the one-dimensional space-charege-limiting current, the two-dimensional space-charge-limiting current in such a diode is enhanced due to the electric-field enhancement along the cathode surface. Among practical parameter ranges, enhancement factor ηb approximately satisfies ηb Aβn, where β is the electric field enhancement factor at the cathode surface, and n is a constant between 1 and 2, which is confirmed to be universal for the diodes with curved surface cathodes.展开更多
A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structur...A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure. In this model, the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account, and one-band effective mass approximation is used. The tunneling probability is obtained by employing the transfer matrix method. Further, the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated. Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than l012 cm 2, which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region. Therefore, for real ultrathin MOS structures with ITC and FOC, this model can give a more accurate description for the tunneling current in the inversion layer.展开更多
This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping w...This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
Short Retraction Notice? This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's?Retraction Guidelines. The aim is to promote the circulation o...Short Retraction Notice? This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's?Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Please see the?article page?for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".展开更多
This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were ...This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were used to build the single and multiple EVs charging simulation model. By using Matlab as a simulation tool, we analyzed harmonic currents of single and multiple EVs chargers. The results show that the harmonic ratio is beyond the scope of the national harmonic standard. Finally a parallel hybrid active filter(PHAPF) was introduced for governance of harmonic.The experimental results show that net side harmonic currents are significantly reduced by using the PHAPF and meet the national standard GB/Z17625.6-2003 regulations limit.展开更多
The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exch...The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.展开更多
One the base of differential algebra of biquaternions, the one model of electro-gravimagnetic interactions of electric and gravimagnetic charges and currents has been constructed. For this, three Newton laws analogues...One the base of differential algebra of biquaternions, the one model of electro-gravimagnetic interactions of electric and gravimagnetic charges and currents has been constructed. For this, three Newton laws analogues are used. The closed system of biquaternionic wave equations is constructed for determination of the charges-currents and electro-gravimagnetic fields and united field of interactions. The equation of charge-current transformation is like the generalization of biquaternionic presentation of Dirac equation. The properties of its solutions are described, depending on properties of external EGM field. The biquaternions of energy-pulse of EGM-field and charges-currents are considered. The energy-pulse of EGM-interactions is calculated.展开更多
One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free...One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free system of electric and gravimagnetic charges and currents and generated by them EGM-field. By using generalized functions theory the fundamental and regular solutions of this system are determined and some of them are considered (spinors, plane waves, shock EGM-waves and others). The properties of these solutions are investigated.展开更多
The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/disch...The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/discharge rates and intermittent discharge experiment are discussed. Though the d t /d E ? 獷 plot is affected by many factors, it clearly has intrinsic relation with the nature of active material such as conductivity and thermodynamic potential of active material, which changes with the state of charge. The d t /d E—E plot can also be applied to other electrochemical active materials, especially to those having several phases during charge or discharge.展开更多
The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The ca...The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pe, defined under the conditions at the source, uniquely determines the possible solutions of these equations. By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ= 0 (magnetically shielded source) and Pθ= const. (immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.展开更多
Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate ox...Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.展开更多
The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, an...The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.展开更多
Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed...Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed results show that the D peak in DCIV spectrum,which related to the drain region,is affected by a superfluous drain leakage current.The band trap band tunneling current is dominant of this current.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51677058)
文摘Conventional multi-stage constant current charging strategies often use higher multiples of current to charge the battery in pursuit of shorter charging times.However,this leads to an increase in battery temperature,while shortening the charging time.This in turn affects the safety of the charging process.Furthermore,the higher charging currents are not ideal for shortening the charging time in the later stages of charging.To solve the aforementioned problems,in this study,a multi-stage constant current charging strategy is presented.This strategy can shorten the battery charging time by using the increase in battery temperature during the charging process as a constraint,using a genetic algorithm to calculate the charging current value,and investigating the phased approach to charging.Finally,the charging strategy is experimentally validated at different ambient temperatures and different initial SOCs.The experimental results show that the charging strategy proposed in this paper not only reduces the amount of calculations,but also reduces the temperature rise by up to 46.4%and charging time by up to 4.2%under different operating conditions.
基金Supported by the Natural Science Foundation of Jiangsu Province of China under Grant Nos BK20161243 and BK20161242the National Natural Science Foundation of China under Grant No 61774007
文摘In field emission under a non-dc voltage, a displacement current is inevitable due to charging the cathode–anode condenser. Under an often-used square voltage pulse, in which the voltage rises from zero to a certain value abruptly, the charging current in the circuit is very large at the rising and falling edges. This large charging current makes measurement of the actual emissive current from the cathode difficult, constitutes a threat to the components in the circuit and causes attenuation of the emissive current within the pulse. To alleviate these drawbacks, trapezoid voltage pulses, whose rising edges are extended dramatically in comparison with square voltage pulses, are employed to extract the field emission. Under a trapezoid voltage pulse, the charging current is clearly lowered as expected. Furthermore, the heat generated by the charging current under the trapezoid voltage pulse is much smaller than that under the square voltage pulse. Hence the emissive current does not show any attenuation within the pulse. Finally, the average emissive currents are found to decrease with the repetition frequency of the pulses.
文摘A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.
文摘To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.
文摘In the micro-grid photovoltaic systems, the random changes of solar radiation enable lead-acid batteries to experience low SOC (State of Charge) or overcharged for periods of time if directly charged with such traditional methods as decreased charging current, which will reduce lifetime of batteries. What’s more, it’s difficult to find a proper reduction coefficient in decreasing charging current. To adapt to the random changes of circumstance and avoid selecting the reduction coefficient, a new fast charging method named decreased charging current based on SOC is proposed to apply into micro-grid photovoltaic systems. It combines batteries’ SOC with the maximum charging voltage to determine the charging rate without strictly selecting reduction coefficient. By close-loop current control strategy and related scheme, the experiment proves the new method is feasible and verifies that, comparing with decreased charging current, the improved method make batteries’ SOC reach 100% in shorter time as well as the temperature of batteries raise more slowly.
文摘A two-dimensional solution of space-charge-limiting current for a high current vacuum diode with a spherical cathode is presented. The relation between space-charge-limiting current and electric field enhancement factor at the cathode surface for the diode with a curved surface cathode is also discussed. It is shown that compared with the current given by the conventional Child-Langmuir law, which describes the one-dimensional space-charege-limiting current, the two-dimensional space-charge-limiting current in such a diode is enhanced due to the electric-field enhancement along the cathode surface. Among practical parameter ranges, enhancement factor ηb approximately satisfies ηb Aβn, where β is the electric field enhancement factor at the cathode surface, and n is a constant between 1 and 2, which is confirmed to be universal for the diodes with curved surface cathodes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61076055)the Program for Innovative Research Team of Zhejiang Normal University of China (Grant No. 2007XCXTD-5)the Open Program of Surface Physics Laboratory of Fudan University, China (Grant No. FDSKL2011-04)
文摘A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure. In this model, the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account, and one-band effective mass approximation is used. The tunneling probability is obtained by employing the transfer matrix method. Further, the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated. Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than l012 cm 2, which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region. Therefore, for real ultrathin MOS structures with ITC and FOC, this model can give a more accurate description for the tunneling current in the inversion layer.
基金Project supported by the Key Project of Shanghai Education Committee (Grant No. 08ZZ42)Science and Technology Commission of Shanghai Municipal (Grant Nos. 08PJ14053,08DZ1140702 and 08520511200)
文摘This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘Short Retraction Notice? This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's?Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Please see the?article page?for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2013CB228202the National Natural Science Foundation of China under Grant No.51361130153
文摘This paper described the impact of the electrical vehicle(EV) charging on the grid harmonic. In view of the randomness of the EV charging process, the harmonic admittance matrix method and superposition method were used to build the single and multiple EVs charging simulation model. By using Matlab as a simulation tool, we analyzed harmonic currents of single and multiple EVs chargers. The results show that the harmonic ratio is beyond the scope of the national harmonic standard. Finally a parallel hybrid active filter(PHAPF) was introduced for governance of harmonic.The experimental results show that net side harmonic currents are significantly reduced by using the PHAPF and meet the national standard GB/Z17625.6-2003 regulations limit.
文摘The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.
文摘One the base of differential algebra of biquaternions, the one model of electro-gravimagnetic interactions of electric and gravimagnetic charges and currents has been constructed. For this, three Newton laws analogues are used. The closed system of biquaternionic wave equations is constructed for determination of the charges-currents and electro-gravimagnetic fields and united field of interactions. The equation of charge-current transformation is like the generalization of biquaternionic presentation of Dirac equation. The properties of its solutions are described, depending on properties of external EGM field. The biquaternions of energy-pulse of EGM-field and charges-currents are considered. The energy-pulse of EGM-interactions is calculated.
文摘One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free system of electric and gravimagnetic charges and currents and generated by them EGM-field. By using generalized functions theory the fundamental and regular solutions of this system are determined and some of them are considered (spinors, plane waves, shock EGM-waves and others). The properties of these solutions are investigated.
文摘The derivative of charge and discharge curves (d t /d E vs E plot) can be used to describe the charge and discharge process more exactly. The d t /d E ? 獷 plots of nickel hydroxide electrode at different charge/discharge rates and intermittent discharge experiment are discussed. Though the d t /d E ? 獷 plot is affected by many factors, it clearly has intrinsic relation with the nature of active material such as conductivity and thermodynamic potential of active material, which changes with the state of charge. The d t /d E—E plot can also be applied to other electrochemical active materials, especially to those having several phases during charge or discharge.
基金Project supported by the National Natural Science Foundation of China (Grant No 10476004).
文摘The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pe, defined under the conditions at the source, uniquely determines the possible solutions of these equations. By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ= 0 (magnetically shielded source) and Pθ= const. (immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.
文摘Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.
文摘The current-voltage(I-V) characteristics of cBN crystal sandwiched between two metallic electrodes are measured and found to be nonlinear. Over 20 samples are measured at room temperature with various electrodes, and the resulting curves are all similar in shape. When a voltage of about 560V is applied to the cBN crystal, the emitted light is visible to the naked eye in a dark room. We explain these phenomena by the space charge limited current and the electronic transition between the X and Г valleys of the conduction band.
文摘Interface traps generated under hot carrier (HC) stress in LDD nMOST's are monitored by the direct current current voltage (DCIV) measurement technique and charge pumping (CP) technique.The measured and analyzed results show that the D peak in DCIV spectrum,which related to the drain region,is affected by a superfluous drain leakage current.The band trap band tunneling current is dominant of this current.