This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint ch...This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.展开更多
Dear Editor,This letter proposes a fuzzy indirect iterative learning(FIIL)active disturbance rejection control(ADRC)scheme to address the impact of uncertain factors of plant-protection unmanned ground vehicle(UGV),in...Dear Editor,This letter proposes a fuzzy indirect iterative learning(FIIL)active disturbance rejection control(ADRC)scheme to address the impact of uncertain factors of plant-protection unmanned ground vehicle(UGV),in which ADRC is a data-driven model-free control algorithm that only relies on the input and output data of the system.Based on the established nonlinear time-varying dynamic model including dynamic load(medicine box),the FIIL technology is adopted to turn the bandwidth and control channel gain online,in which the fuzzy logic system is used to update the gain parameters of iterative learning in real time.Simulation and experiment show the FIIL-ADRC scheme has better control performance.展开更多
This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) metho...This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) method. It has sufficiently high accuracy with very few unknowns for the 2D viscoelastic wave equation. Existence, stability, and convergence of the OFDI solutions are analyzed. Numerical simulations verify efficiency and feasibility of the proposed scheme.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
In this paper, we suggest a new type of three step iterative scheme called the CR iterative scheme and study the strong convergence of this iterative scheme for a certain class of quasi-contractive operators in Banach...In this paper, we suggest a new type of three step iterative scheme called the CR iterative scheme and study the strong convergence of this iterative scheme for a certain class of quasi-contractive operators in Banach spaces. We show that for the aforementioned class of operators, the CR iterative scheme is equivalent to and faster than Picard, Mann, Ishikawa, Agarwal et al., Noor and SP iterative schemes. Moreover, we also present various numerical examples using computer programming in C++ for the CR iterative scheme to compare it with the other above mentioned iterative schemes. Our results show that as far as the rate of convergence is concerned 1) for increasing functions the CR iterative scheme is best, while for decreasing functions the SP iterative scheme is best;2) CR iterative scheme is best for a certain class of quasi-contractive operators.展开更多
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.展开更多
This paper deals with the problem of iterative learning control for a class of linear continuous-time switched systems in the presence of a fixed initial shift. Here, the considered switched systems are operated durin...This paper deals with the problem of iterative learning control for a class of linear continuous-time switched systems in the presence of a fixed initial shift. Here, the considered switched systems are operated during a finite time interval repetitively. According to the characteristics of the systems, a PD-type learning scheme is proposed for such switched systems with arbitrary switching rules, and the corresponding output limiting trajectories under the action of the PD-type learning scheme are given. Based on the contraction mapping method, it is shown that this scheme can guarantee the outputs of the systems converge uniformly to the output limiting trajectories of the systems over the whole time interval. Furthermore, the initial rectifying strategies are applied to the systems for eliminating the effect of the fixed initial shift. When the learning scheme is applied to the systems, the outputs of the systems can converge to the desired reference trajectories over a pre-specified interval. Finally, simulation examples illustrate the effectiveness of the proposed method.展开更多
In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments...In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable.展开更多
In this paper, we study, iterative algorithms.for finding approximate solutions ofcompletely generalized strongly nonlinear quasivariational inequalities which include,as a special case, some known results in this .f...In this paper, we study, iterative algorithms.for finding approximate solutions ofcompletely generalized strongly nonlinear quasivariational inequalities which include,as a special case, some known results in this .field. Our results are the extension andimprovents of the results of Siddiqi and Ansari, Ding. and Zeng.展开更多
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics...Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.展开更多
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of non...In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.展开更多
The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable B...The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.展开更多
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ...Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.展开更多
In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration ...In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration scheme are established. In particular, necessary and sufficient conditions for strong convergence of this explicit iteration scheme are obtained. At last, some useful corollaries for strong convergence of this explicit iteration scheme are given.展开更多
Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems....Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.展开更多
Using a predictor-corrector tactic, this paper derives new iteration schemes for unconstrained optimization. It yields a point (predictor) by some line search from the current point;then with the two points it constru...Using a predictor-corrector tactic, this paper derives new iteration schemes for unconstrained optimization. It yields a point (predictor) by some line search from the current point;then with the two points it constructs a quadratic interpolation curve to approximate some ODE trajectory;it finally determines a new point (corrector) by searching along the quadratic curve. In particular, this paper gives a global convergence analysis for schemes associated with the quasi-Newton updates. In our computational experiments, the new schemes using DFP and BFGS updates outperformed their conventional counterparts on a set of standard test problems.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
In this paper,a multirate time iterative scheme with multiphysics finite element method is proposed and analyzed for the nonlinear poroelasticity model.The original problem is reformulated into a generalized nonlinear...In this paper,a multirate time iterative scheme with multiphysics finite element method is proposed and analyzed for the nonlinear poroelasticity model.The original problem is reformulated into a generalized nonlinear Stokes problem coupled with a diffusion problem of a pseudo pressure field by a new multiphysics approach.A multiphysics finite element method is adopted for the spatial discretization,and the generalized nonlinear Stokes problem is solved in a coarse time step and the diffusion problem is solved in a finer time step.The proposed algorithm is a decoupled algorithm,which is easily implemented in computation and reduces greatly computation cost.The stability analysis and the convergence analysis for the multirate iterative scheme with multiphysics finite element method are given.Some numerical tests are shown to demonstrate and validate the analysis results.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
文摘This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.
基金supported by the National Key R&D Program of China(2022YFD2001405)the National Natural Science Foundation of China(51979275)+1 种基金the Open Project Program of Key Laboratory of Smart Agricultural Technology in Tropical South China,Ministry of Agriculture and Rural Affairs,China(HNZHNY-KFKT-202202)the 2115 Talent Development Program of China Agricultural University.
文摘Dear Editor,This letter proposes a fuzzy indirect iterative learning(FIIL)active disturbance rejection control(ADRC)scheme to address the impact of uncertain factors of plant-protection unmanned ground vehicle(UGV),in which ADRC is a data-driven model-free control algorithm that only relies on the input and output data of the system.Based on the established nonlinear time-varying dynamic model including dynamic load(medicine box),the FIIL technology is adopted to turn the bandwidth and control channel gain online,in which the fuzzy logic system is used to update the gain parameters of iterative learning in real time.Simulation and experiment show the FIIL-ADRC scheme has better control performance.
基金Project supported by the National Natural Science Foundation of China(No.11671106)the Fundamental Research Funds for the Central Universities(No.2016MS33)
文摘This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) method. It has sufficiently high accuracy with very few unknowns for the 2D viscoelastic wave equation. Existence, stability, and convergence of the OFDI solutions are analyzed. Numerical simulations verify efficiency and feasibility of the proposed scheme.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
文摘In this paper, we suggest a new type of three step iterative scheme called the CR iterative scheme and study the strong convergence of this iterative scheme for a certain class of quasi-contractive operators in Banach spaces. We show that for the aforementioned class of operators, the CR iterative scheme is equivalent to and faster than Picard, Mann, Ishikawa, Agarwal et al., Noor and SP iterative schemes. Moreover, we also present various numerical examples using computer programming in C++ for the CR iterative scheme to compare it with the other above mentioned iterative schemes. Our results show that as far as the rate of convergence is concerned 1) for increasing functions the CR iterative scheme is best, while for decreasing functions the SP iterative scheme is best;2) CR iterative scheme is best for a certain class of quasi-contractive operators.
基金supported by National Natural Science Foundation of China(61807016)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
文摘In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
基金The NSF(11371013)of Chinathe Research Innovation Program(SKCX17 032)for Graduate Students
文摘This paper deals with the problem of iterative learning control for a class of linear continuous-time switched systems in the presence of a fixed initial shift. Here, the considered switched systems are operated during a finite time interval repetitively. According to the characteristics of the systems, a PD-type learning scheme is proposed for such switched systems with arbitrary switching rules, and the corresponding output limiting trajectories under the action of the PD-type learning scheme are given. Based on the contraction mapping method, it is shown that this scheme can guarantee the outputs of the systems converge uniformly to the output limiting trajectories of the systems over the whole time interval. Furthermore, the initial rectifying strategies are applied to the systems for eliminating the effect of the fixed initial shift. When the learning scheme is applied to the systems, the outputs of the systems can converge to the desired reference trajectories over a pre-specified interval. Finally, simulation examples illustrate the effectiveness of the proposed method.
文摘In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable.
文摘In this paper, we study, iterative algorithms.for finding approximate solutions ofcompletely generalized strongly nonlinear quasivariational inequalities which include,as a special case, some known results in this .field. Our results are the extension andimprovents of the results of Siddiqi and Ansari, Ding. and Zeng.
基金supported by Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science&Technology,kfj150602)Hunan Province Science and Technology Program Funded Projects,China(2015NK3035)+1 种基金the Land and Resources Department Scientific Research Project of Hunan Province,China(2013-27)the Education Department Scientific Research Project of Hunan Province,China(13C1011)
文摘Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.
文摘In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.
基金Project supported by the Natural Science Foundation of Yibin University (No. 2011Z03)
文摘The purpose of this paper is to study the almost sure T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of C-weakly contractive type random operators in a separable Banach space. Under suitable conditions, the Bochner integrability of random fixed points for this kind of random operators and the almost sure T-stability and convergence for these two kinds of random iterative algorithms are proved.
文摘Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.
文摘In this paper, we consider an explicit iteration scheme with perturbed mapping for nonexpansive mappings in real q-uniformly smooth Banach spaces. Some weak and strong convergence theorems for this explicit iteration scheme are established. In particular, necessary and sufficient conditions for strong convergence of this explicit iteration scheme are obtained. At last, some useful corollaries for strong convergence of this explicit iteration scheme are given.
文摘Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.
文摘Using a predictor-corrector tactic, this paper derives new iteration schemes for unconstrained optimization. It yields a point (predictor) by some line search from the current point;then with the two points it constructs a quadratic interpolation curve to approximate some ODE trajectory;it finally determines a new point (corrector) by searching along the quadratic curve. In particular, this paper gives a global convergence analysis for schemes associated with the quasi-Newton updates. In our computational experiments, the new schemes using DFP and BFGS updates outperformed their conventional counterparts on a set of standard test problems.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
基金supported by the National Natural Science Foundation of China(Grant No.11971150)partially by the National Natural Science Foundation of China(Grant No.11801143).
文摘In this paper,a multirate time iterative scheme with multiphysics finite element method is proposed and analyzed for the nonlinear poroelasticity model.The original problem is reformulated into a generalized nonlinear Stokes problem coupled with a diffusion problem of a pseudo pressure field by a new multiphysics approach.A multiphysics finite element method is adopted for the spatial discretization,and the generalized nonlinear Stokes problem is solved in a coarse time step and the diffusion problem is solved in a finer time step.The proposed algorithm is a decoupled algorithm,which is easily implemented in computation and reduces greatly computation cost.The stability analysis and the convergence analysis for the multirate iterative scheme with multiphysics finite element method are given.Some numerical tests are shown to demonstrate and validate the analysis results.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.