Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr...In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed...The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How...Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A...Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.展开更多
A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in...A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.展开更多
A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on...A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe...Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.展开更多
In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were con...In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.展开更多
Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, no...Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.展开更多
The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demo...The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on ener...In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on energy method,elastic-plastic mechanics and numerical analysis.Bend to buckle experiments were carried out on the designed press bend dies.It is found that the predicted results based on the proposed method agree well with the experimental results.With the proposed method,the buckling of the stiffeners in press bend forming of the aluminum alloy integral panels with high-stiffener can be predicted reasonably.展开更多
A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,tr...A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.展开更多
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金supported by the fund from ShenyangMint Company Limited(No.20220056)Senior Talent Foundation of Jiangsu University(No.19JDG022)Taizhou City Double Innovation and Entrepreneurship Talent Program(No.Taizhou Human Resources Office[2022]No.22).
文摘In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
文摘The DP1500 steel series successfully produced by Baosteel is a marked improvement over the cold-rolled hot-dip galvanized dual-phase steel series.Sufficient parameter data related to forming characteristics are needed for the successful application of dual-phase steel series in engineering structures.Therefore,differences in the mech-anical properties,forming limit,hole expansion ratio,and stretch bend limit of the 1.5 GPa ultrahigh-strength steel,including DP1500,QP1500,and MS1500,have been systematically studied.Results show that the DP1500 exhibits good plastic deformation performance and approximately 5% uniform elongation,and its true major strain minimum on the forming limit curve(FLC_(0)) value is approximately 0.083,which is higher and lower than the FLC_(0) values of MS1500 and QP1500 of the same strength grade,respectively.DP1500 also exhibits good flanging and pore expansion capabilities and superior performance to QP1500 and MS1500.The minimum radius-to-thickness(R/T) ratio(1.4) of DP1500 in the 90° bend tests transverse to the rolling direction is between the R/T ratios of MS1500 and the QP1500.Overall,the formability performance of DP1500 is between that of MS1500 and QP1500.Its excellent crash energy absorption and formability performance render it a suitable structural component,and it has been successfully tested and verified on a typical complex ultrahigh-strength steel skeleton structure.
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
基金supported by the National Nat-ural Science Foundation of China(Grant Nos.51775194 and 52090043).
文摘Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.
基金Project(51375328)supported by the National Natural Science Foundation of ChinaProject(20143009)supported by Graduates Innovation Project of Shanxi Province,ChinaProject(2015-036)supported by Shanxi Scholarship Council of China
文摘A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.
基金Project(50625101) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject supported by Graduate Independent Innovation Foundation of Shandong University(GIIFSDU),ChinaProject(51071097) supported by the National Natural Science Foundation of China
文摘A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program for New Century Excellent Talents in University,China
文摘Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.
基金Project(2010CB731700)supported by the National Basic Research Program of China
文摘In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.
基金Project(50775197)supported by the National Natural Science Foundation of China
文摘Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University, ChinaProject (20102024) supported by the Natural Science Foundation of Liaoning Province, China
文摘The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project (51005010) supported by the National Natural Science Foundation of ChinaProject (20091102110021) supported by the Specialized Research Fund for the Doctoral Program of High Education of China
文摘In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on energy method,elastic-plastic mechanics and numerical analysis.Bend to buckle experiments were carried out on the designed press bend dies.It is found that the predicted results based on the proposed method agree well with the experimental results.With the proposed method,the buckling of the stiffeners in press bend forming of the aluminum alloy integral panels with high-stiffener can be predicted reasonably.
基金Projects(50835002,50805035)support by the National Natural Science Foundation of ChinaProject(QC08C55)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(200802131031)supported by the PhD Programs Foundation of Ministry of Education of China for Young Scholars
文摘A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.