TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided...TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no...Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.展开更多
Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA stra...Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.展开更多
The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation...The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation and poor structural stability give rise to inferior rate performance and undesirable cycling life.Herein,we propose a dual modification strategy combining primary particle structure design and element doping to modify Li[Ni_(0.95)Co_(0.025)Mn_(0.025)]O_(2) cathode by tungsten and fluorine co-doped(W-F-NCM95).The doping of W can convert the microstructure of primary particles to the unique rod-like shape,which is beneficial to enhance the reversibility of phase transition and alleviate the generation of microcracks.F doping is conducive to alleviating the surface side reactions.Thus,due to the synergistic effect of W,F codoping,the obtained W-F-NCM95 cathodes deliver a high initial capacity of 236.1 mA h g^(-1) at 0.1 C and superior capacity retention of 88.7%over 100 cycles at 0.5 C.Moreover,the capacity still maintains73.8%after 500 cycles at 0.5 C and the texture of primary particle is intact.This work provides an available strategy by W and F co-doping to enhance the electrochemistry performance of high-nickel cathodes for practical application.展开更多
Ontology mapping is a key interoperability enabler for the semantic web. In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network( OM-BN) is proposed. OM-BN combines the models o...Ontology mapping is a key interoperability enabler for the semantic web. In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network( OM-BN) is proposed. OM-BN combines the models of ontology and Bayesian Network,and applies the method of Multi-strategy to computing similarity. In OM-BN,the characteristics of ontology,such as tree structure and semantic inclusion relations among concepts,are used during the process of translation from ontology to ontology Bayesian network( OBN). Then the method of Multi-strategy is used to create similarity table( ST) for each concept-node in OBN. Finally,the iterative process of mapping reasoning is used to deduce new mappings from STs,repeatedly.展开更多
This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the di...This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.展开更多
Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,...Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.展开更多
Portable energy solutions are highly desired in the era of the Internet of Things for powering various distributed micro-electronic devices.At the same time,the energy crisis and catastrophic global warming are becomi...Portable energy solutions are highly desired in the era of the Internet of Things for powering various distributed micro-electronic devices.At the same time,the energy crisis and catastrophic global warming are becoming serious problems in the world,emphasizing the urgent need for clean and renewable energy.Here,we report a low-cost,high-performance,and portable hand-driven whirligig structured triboelectric–electromagnetic hybrid nanogenerator(whirligig-HNG)for multi-strategy energy harvesting.The whirligig-HNG comprises a dynamic supercoiling TENG via the pulling-strings and inner-distributed EMGs(variable number)in the rotator.The whirligig structure can readily convert linear displacement in low frequency into rotary motion in extremely high frequency.Based on this ingenious design,the whirligig-HNG is capable to harvest the triboelectric energy from the supercoiling/uncoiling process from the pulling strings and simultaneously utilize the high-frequency rotation energy via electromagnetic induction.We have systematically investigated the working mecha-nism of the whirligig-HNG for coupled energy harvesting and compared the individual characteristics of TENG and EMG.The whirligig-HNG is successfully demonstrated to light up more than 100 commercial light-emitting diodes(LEDs)and drive portable electronics.This research presents the enormous potential of whirligig-HNG as a manual and portable power supply for powering various portable electronics.展开更多
基金supported by National Science Foundation of China(Grant No.52075152)Xining Big Data Service Administration.
文摘TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
文摘Self-serving,rational agents sometimes cooperate to their mutual benefit.The two-player iterated prisoner′s dilemma game is a model for including the emergence of cooperation.It is generally believed that there is no simple ultimatum strategy which a player can control the return of the other participants.The zero-determinant strategy in the iterated prisoner′s dilemma dramatically expands our understanding of the classic game by uncovering strategies that provide a unilateral advantage to sentient players pitted against unwitting opponents.However,strategies in the prisoner′s dilemma game are only two strategies.Are there these results for general multi-strategy games?To address this question,the paper develops a theory for zero-determinant strategies for multi-strategy games,with any number of strategies.The analytical results exhibit a similar yet different scenario to the case of two-strategy games.The results are also applied to the Snowdrift game,the Hawk-Dove game and the Chicken game.
基金supported in part by the National Natural Sciences Foundation of China (NSFC) under Grant 61525103the National Natural Sciences Foundation of China under Grant 61501140the Shenzhen Fundamental Research Project under Grant JCYJ20150930150304185
文摘Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.
基金supported by the National Key R&D Program of China(2018YFB0905600)。
文摘The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation and poor structural stability give rise to inferior rate performance and undesirable cycling life.Herein,we propose a dual modification strategy combining primary particle structure design and element doping to modify Li[Ni_(0.95)Co_(0.025)Mn_(0.025)]O_(2) cathode by tungsten and fluorine co-doped(W-F-NCM95).The doping of W can convert the microstructure of primary particles to the unique rod-like shape,which is beneficial to enhance the reversibility of phase transition and alleviate the generation of microcracks.F doping is conducive to alleviating the surface side reactions.Thus,due to the synergistic effect of W,F codoping,the obtained W-F-NCM95 cathodes deliver a high initial capacity of 236.1 mA h g^(-1) at 0.1 C and superior capacity retention of 88.7%over 100 cycles at 0.5 C.Moreover,the capacity still maintains73.8%after 500 cycles at 0.5 C and the texture of primary particle is intact.This work provides an available strategy by W and F co-doping to enhance the electrochemistry performance of high-nickel cathodes for practical application.
基金National Natural Science Foundation of China(No.61204127)Natural Science Foundations of Heilongjiang Province,China(Nos.F2015024,F201334)Young Foundation of Qiqihar University,China(No.2014k-M08)
文摘Ontology mapping is a key interoperability enabler for the semantic web. In this paper,a new ontology mapping approach called ontology mapping based on Bayesian network( OM-BN) is proposed. OM-BN combines the models of ontology and Bayesian Network,and applies the method of Multi-strategy to computing similarity. In OM-BN,the characteristics of ontology,such as tree structure and semantic inclusion relations among concepts,are used during the process of translation from ontology to ontology Bayesian network( OBN). Then the method of Multi-strategy is used to create similarity table( ST) for each concept-node in OBN. Finally,the iterative process of mapping reasoning is used to deduce new mappings from STs,repeatedly.
文摘This paper studies the difference algorithm parameters characteristic of the multicast routing problem, and to compare it with genetic algorithms. The algorithm uses the path of individual coding, combined with the differential cross-choice strategy and operations optimization. Finally, we simulated 30 node networks, and compared the performance of genetic algorithm and differential evolution algorithm. Experimental results show that multi-strategy Differential Evolution algorithm converges faster and better global search ability and stability.
基金supported by Grant(42271391 and 62006214)from National Natural Science Foundation of Chinaby Grant(8091B022148)from Joint Funds of Equipment Pre-Research and Ministry of Education of China+1 种基金by Grant(2023BIB015)from Special Project of Hubei Key Research and Development Programby Grant(KLIGIP-2021B03)from Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing.
文摘Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.
基金supported by the National Key Research and Development Program of China(2021YFB3200304)the National Natural Science Foundation of China(52073031)+2 种基金Beijing Nova Program(Z191100001119047,Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the“Hundred Talents Program”of the Chinese Academy of Science.
文摘Portable energy solutions are highly desired in the era of the Internet of Things for powering various distributed micro-electronic devices.At the same time,the energy crisis and catastrophic global warming are becoming serious problems in the world,emphasizing the urgent need for clean and renewable energy.Here,we report a low-cost,high-performance,and portable hand-driven whirligig structured triboelectric–electromagnetic hybrid nanogenerator(whirligig-HNG)for multi-strategy energy harvesting.The whirligig-HNG comprises a dynamic supercoiling TENG via the pulling-strings and inner-distributed EMGs(variable number)in the rotator.The whirligig structure can readily convert linear displacement in low frequency into rotary motion in extremely high frequency.Based on this ingenious design,the whirligig-HNG is capable to harvest the triboelectric energy from the supercoiling/uncoiling process from the pulling strings and simultaneously utilize the high-frequency rotation energy via electromagnetic induction.We have systematically investigated the working mecha-nism of the whirligig-HNG for coupled energy harvesting and compared the individual characteristics of TENG and EMG.The whirligig-HNG is successfully demonstrated to light up more than 100 commercial light-emitting diodes(LEDs)and drive portable electronics.This research presents the enormous potential of whirligig-HNG as a manual and portable power supply for powering various portable electronics.