A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to...A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.展开更多
The design of aircraft hydraulic pipeline system is limited by many factors,such as the integrity of aviation structure or narrow installation space,so the limited clamp support position should be considered.This pape...The design of aircraft hydraulic pipeline system is limited by many factors,such as the integrity of aviation structure or narrow installation space,so the limited clamp support position should be considered.This paper studied the frequency adjustment and dynamic responses reduction of the multi-support pipeline system through experiment and numerical simulation.To avoid the resonance of pipeline system,we proposed two different optimization programs,one was to avoid aero-engine working range,and another was to avoid aircraft hydraulic pump pulsation range.An optimization method was introduced in this paper to obtain the optimal clamp position.The experiments were introduced to validate the optimization results,and the theoretical optimization results can agree well with the test.With regard to avoiding the aero-engine vibration frequency,the test results revealed that the first natural frequency was far from the aero-engine vibration frequency.And the dynamic frequency sweep results showed that no resonance occurred on the pipeline in the engine vibration frequency range after optimization.Additionally,with regard to avoiding the pump vibration frequency,the test results revealed that natural frequencies have been adjusted and far from the pump vibration frequency.And the dynamic frequency sweep results showed that pipeline under optimal clamp position cannot lead to resonance.The sensitivity analysis results revealed the changing relationships between different clamp position and natural frequency.This study can provide helpful guidance on the analysis and design of practical aircraft pipeline.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derive...The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derived.The analytic formulae and numerical computing results of seismic response PSD have been derived to study the mechanism of multi-support excitation effects,such as the wave-passage effect and incoherence effect,for the seismic response of multiand large-span structures.By using a multi-span truss as an example,the influence of multi-support excitation effects on the seismic response of such structures is studied.展开更多
A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support e...A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support excitation, the position and value of the maximum stress under multi-support excitations both change and the amount of elements with obvious changes is large and more than 70% of the total. Moreover, when other terms are not changed, this influence will decrease as the span decreases, but increa...展开更多
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly ...To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.展开更多
The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displ...The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.展开更多
Kilns are the key equipment in the metallurgy,architectural and chemistry industry. It is the statically indeterminate system with over load, large torque and multi-support. The kiln move axis warp resulting in that t...Kilns are the key equipment in the metallurgy,architectural and chemistry industry. It is the statically indeterminate system with over load, large torque and multi-support. The kiln move axis warp resulting in that the load distribution is asymmetry, cause many mechanical failure and safe accidents and the interruption of the produce, which bring a great losses. Treating the distribution of the kiln load and the complexity of the stiffness change, the all-purpose model and matrix, used to solve the variable-stiffness beam upon complex load, are established in this paper. The resultant force of kiln in vertical and horizontal direction is calculated. Accordingly, the liner formulas for calculating the supporting force of the support wheels are obtained, and the wheel supporting force also can be easily obtained based on each shell warp. This will provide theory conference for safety management and rational maintenance.展开更多
In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its ...In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.展开更多
To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two...To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.展开更多
There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in dire...There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.展开更多
Optical coherence tomography(OCT)provides significant advantages of high resolution(approaching the histopathology level)realtime imaging of tsess without use of contrast agents.Based on these advantages,the microstru...Optical coherence tomography(OCT)provides significant advantages of high resolution(approaching the histopathology level)realtime imaging of tsess without use of contrast agents.Based on these advantages,the microstructural features of tumors can be visualized and detected intra-operatively.However,it is still not clinically accepted for tumor margin delin-eation due to poor specificity and accuracy.In contrast,Raman spectroscopy(RS)can obtain tissue information at the molecular level,but does not provide real-time inaging capability.Therefore,combining OCT and RS could provide synergy.To this end,we present a tissue analysis and dassification method using both the slope of OCT intensity signal Vs depth and the principle components from the RS spectrum as the indicators for tissuse characterization.The goal of this study was to understand prediction accuracy of OCT and combined OCT/RS method for dassification of optically similar tisues and organs.Our pilot experiments were performed on mouse kidneys,livers,and small intestines(SIs).The prediction accuracy with five-fold cross validation of the method has been evaluated by the support vector machine(SVM)method.The results demonstrate that tissue characterization based on the OCT/RS method was superior compared to using OCT structural information alone.This combined OCT/RS method is potentially useful as a noninvasive optical biopsy technique for rapid and automatic tissue characterization during surgery.展开更多
A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary ...A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.展开更多
When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful ...When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.展开更多
The vibration tests of Laoshan bicycle gymnasium for the Olympic Games are performed under multi-support excitations in order to verify the effectiveness of multi-support time history method. The excitation sources co...The vibration tests of Laoshan bicycle gymnasium for the Olympic Games are performed under multi-support excitations in order to verify the effectiveness of multi-support time history method. The excitation sources come from the impact forces acting on the ring beam of the reticulated structure, on the basis of which the records of motions of each excited point and corresponding structural vibration responses are all collected. The theoretical analytical model of the structure is further established and the structural dynamic responses are obtained subjected to the same excitation case via multi-support time history method. The calculation results are generally in agreement with those of the test in both time domain and frequency domain, which verify the effectiveness of multi-support time history method. The vibration test can also provide references for long-span structures under multi-support excitations.展开更多
基金the China Scholarship Council and the Teaching and Research Award Program for Outstanding Young Teachers (TRAPOYT) in Higher Education Institutions of MOE,PRC.
文摘A linear response history analysis method is used to determine the influence of three factors:geometric incoherency,wave-passage,and local site characteristics on the response of lnulti-support structures subjected to differential ground motions.A one-span frame and a reduced model of a 24-span bridge,located in Las Vegas,Nevada are studied,in which the influence of each of the three factors and their combinations are analyzed.It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response,which does not exist in structures subjected to uniform excitation.The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
基金Supported by National Natural Science Foundation of China(Grant No.51875460)Aviation Power Foundation(Grant No.6141B090320)Foundation of Innovation and Creation for Graduate Students in Northwestern Ploytechnical University(Grant No.ZZ2019124).
文摘The design of aircraft hydraulic pipeline system is limited by many factors,such as the integrity of aviation structure or narrow installation space,so the limited clamp support position should be considered.This paper studied the frequency adjustment and dynamic responses reduction of the multi-support pipeline system through experiment and numerical simulation.To avoid the resonance of pipeline system,we proposed two different optimization programs,one was to avoid aero-engine working range,and another was to avoid aircraft hydraulic pump pulsation range.An optimization method was introduced in this paper to obtain the optimal clamp position.The experiments were introduced to validate the optimization results,and the theoretical optimization results can agree well with the test.With regard to avoiding the aero-engine vibration frequency,the test results revealed that the first natural frequency was far from the aero-engine vibration frequency.And the dynamic frequency sweep results showed that no resonance occurred on the pipeline in the engine vibration frequency range after optimization.Additionally,with regard to avoiding the pump vibration frequency,the test results revealed that natural frequencies have been adjusted and far from the pump vibration frequency.And the dynamic frequency sweep results showed that pipeline under optimal clamp position cannot lead to resonance.The sensitivity analysis results revealed the changing relationships between different clamp position and natural frequency.This study can provide helpful guidance on the analysis and design of practical aircraft pipeline.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
基金National Natural Science Foundation of China under Grant No.51038006Specializes Research Fund for the Doctoral Program of Higher Education under Grant No.20090002110045
文摘The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derived.The analytic formulae and numerical computing results of seismic response PSD have been derived to study the mechanism of multi-support excitation effects,such as the wave-passage effect and incoherence effect,for the seismic response of multiand large-span structures.By using a multi-span truss as an example,the influence of multi-support excitation effects on the seismic response of such structures is studied.
基金Supported by National Natural Science Foundation of China (No. 50778122)Program for New Century Excellent Talents in University (NCET)
文摘A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support excitation, the position and value of the maximum stress under multi-support excitations both change and the amount of elements with obvious changes is large and more than 70% of the total. Moreover, when other terms are not changed, this influence will decrease as the span decreases, but increa...
基金National Natural Science Foundation of China under Grant Nos.51738007,51808099the Fundamental Research Funds for the Central Universities under Grant No.DUT20RC(3)005。
文摘To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.
基金Project(51078242)supported by the National Natural Science Foundation of China
文摘The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.
基金Supported by the Key Project of Hunan Provincial Natural Science Foundation ( Grant No.05JJ20012)Supported by Project of Hunan Provincial Research Scheme(Grant No.05CK3034)
文摘Kilns are the key equipment in the metallurgy,architectural and chemistry industry. It is the statically indeterminate system with over load, large torque and multi-support. The kiln move axis warp resulting in that the load distribution is asymmetry, cause many mechanical failure and safe accidents and the interruption of the produce, which bring a great losses. Treating the distribution of the kiln load and the complexity of the stiffness change, the all-purpose model and matrix, used to solve the variable-stiffness beam upon complex load, are established in this paper. The resultant force of kiln in vertical and horizontal direction is calculated. Accordingly, the liner formulas for calculating the supporting force of the support wheels are obtained, and the wheel supporting force also can be easily obtained based on each shell warp. This will provide theory conference for safety management and rational maintenance.
文摘In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.
基金supported by National Natural Science Foundation of China (No. 50708100)National Science and Technology Support Project of China (No. 2006BAC13B02)partially by Basic Research Program of Institute of Mechanics Engineering, China Earthquake Administration (No. 2007B02)
文摘To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design.
文摘There are two models in use today to analyze structural responses when subjected to earthquake ground motions, the Displacement Input Model (DIM) and the Acceleration Input Model (AIM). The time steps used in direct integration methods for these models are analyzed to examine the suitability of DIM. Numerical results are presented and show that the time-step for DIM is about the same as for AIM, and achieves the same accuracy. This is contrary to previous research that reported that there are several sources of numerical errors associated with the direct application of earthquake displacement loading, and a very small time step is required to define the displacement record and to integrate the dynamic equilibrium equation. It is shown in this paper that DIM is as accurate and suitable as, if not more than, AIM for analyzing the response of a structure to uniformly distributed and spatially varying ground motions.
基金supported in part by the grants to Kirill Larin from NIH 1R01EY022362,1R01HL120140,U54HG006348,and DOD PRJ71Tsupported by grants to Wei-Chuan Shih from NSF CAREER Award (CBET-1151154)+1 种基金NASA Early Career Faculty Grant (NNX12AQ44G)Gulf of Mexico Research Initiative (GoMRI-030).
文摘Optical coherence tomography(OCT)provides significant advantages of high resolution(approaching the histopathology level)realtime imaging of tsess without use of contrast agents.Based on these advantages,the microstructural features of tumors can be visualized and detected intra-operatively.However,it is still not clinically accepted for tumor margin delin-eation due to poor specificity and accuracy.In contrast,Raman spectroscopy(RS)can obtain tissue information at the molecular level,but does not provide real-time inaging capability.Therefore,combining OCT and RS could provide synergy.To this end,we present a tissue analysis and dassification method using both the slope of OCT intensity signal Vs depth and the principle components from the RS spectrum as the indicators for tissuse characterization.The goal of this study was to understand prediction accuracy of OCT and combined OCT/RS method for dassification of optically similar tisues and organs.Our pilot experiments were performed on mouse kidneys,livers,and small intestines(SIs).The prediction accuracy with five-fold cross validation of the method has been evaluated by the support vector machine(SVM)method.The results demonstrate that tissue characterization based on the OCT/RS method was superior compared to using OCT structural information alone.This combined OCT/RS method is potentially useful as a noninvasive optical biopsy technique for rapid and automatic tissue characterization during surgery.
基金National Natural Science Foundation of China Under Grant No.50439010NSFC and Korea Science and Engineering Foundation Under Grant No.50811140341
文摘A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.
基金This work is supported by Natural Science Foundation of Shandong Province(Grant no.ZR2018MEE021)Equipment Pre Research Fund Project(Grant no.61402100501).
文摘When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.
基金the National Natural Science Foundation of China (Grant No.50108003)
文摘The vibration tests of Laoshan bicycle gymnasium for the Olympic Games are performed under multi-support excitations in order to verify the effectiveness of multi-support time history method. The excitation sources come from the impact forces acting on the ring beam of the reticulated structure, on the basis of which the records of motions of each excited point and corresponding structural vibration responses are all collected. The theoretical analytical model of the structure is further established and the structural dynamic responses are obtained subjected to the same excitation case via multi-support time history method. The calculation results are generally in agreement with those of the test in both time domain and frequency domain, which verify the effectiveness of multi-support time history method. The vibration test can also provide references for long-span structures under multi-support excitations.