期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Traffic Flow Statistics Method Based on Deep Learning and Multi-Feature Fusion 被引量:1
1
作者 Liang Mu Hong Zhao +3 位作者 Yan Li Xiaotong Liu Junzheng Qiu Chuanlong Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期465-483,共19页
Traffic flow statistics have become a particularly important part of intelligent transportation.To solve the problems of low real-time robustness and accuracy in traffic flow statistics.In the DeepSort tracking algori... Traffic flow statistics have become a particularly important part of intelligent transportation.To solve the problems of low real-time robustness and accuracy in traffic flow statistics.In the DeepSort tracking algorithm,the Kalman filter(KF),which is only suitable for linear problems,is replaced by the extended Kalman filter(EKF),which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient(HOG)of the target.The multi-target tracking framework was constructed with YOLO V5 target detection algorithm.An efficient and longrunning Traffic Flow Statistical framework(TFSF)is established based on the tracking framework.Virtual lines are set up to record the movement direction of vehicles to more accurate and detailed statistics of traffic flow.In order to verify the robustness and accuracy of the traffic flow statistical framework,the traffic flow in different scenes of actual road conditions was collected for verification.The experimental validation shows that the accuracy of the traffic statistics framework reaches more than 93%,and the running speed under the detection data set in this paper is 32.7FPS,which can meet the real-time requirements and has a particular significance for the development of intelligent transportation. 展开更多
关键词 Deep learning multi-target tracking kalman filter histogram of oriented gradient traffic flow statistics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部