期刊文献+
共找到40,121篇文章
< 1 2 250 >
每页显示 20 50 100
Monitoring urban land cover and vegetation change by multi-temporal remote sensing information 被引量:10
1
作者 DU Peijun LI Xingli +2 位作者 CAO Wen LUO Yan ZHANG Huapeng 《Mining Science and Technology》 EI CAS 2010年第6期922-932,共11页
In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a ... In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990. 展开更多
关键词 urban settlement land cover change VEGETATION hierarchical classifier system URBANIZATION NDVI NDVI difference urban remote sensing
下载PDF
Land Cover Fragmentation Using Multi-Temporal Remote Sensing on Major Mine Sites in Southern Katanga(Democratic Republic of Congo)
2
作者 Laetitia Dupin Collin Nkono +3 位作者 Christian Burlet Francois Muhashi Yves Vanbrabant 《Advances in Remote Sensing》 2013年第2期127-139,共13页
The study areas are located in the Katanga province to the South Eastern part of the Democratic Republic of Congo (DRC). It focuses on the Kolwezi and Tenke-Fungurume mining centers, located in the vicinity of the Bas... The study areas are located in the Katanga province to the South Eastern part of the Democratic Republic of Congo (DRC). It focuses on the Kolwezi and Tenke-Fungurume mining centers, located in the vicinity of the Basse-Kando reserve. The 3 study areas have faced large scale human induced the fragmentation of land cover. A combination of ancillary data and satellite imageries was interpreted to construct fragmentation dynamics over the last 30 years. This study is an initial step towards assessing the impact of fragmentation on sustainable land cover in the Katanga. The results bring out that large trends of fragmentation differently occurred over the last 30 years (1979 to 2011) in the three focused areas. The most dominant fragmentation processes were gains in barren soil and cities surface and a sharp reduction in burned areas. In Kolwezi, a close relationship is observed between growth and regression of barren soil and cities over vegetation. The Tenke-Fungurume site shows a growth during the 1980-1990 time slice and regression of vegetation during the following two decades. The Basse-Kando site analyze brings out growth of vegetation and regression of burned area due to vegetation conservation efforts. This is one of the studies in Katanga around mines activities that combine multi-source and spatio-temporal data on land cover to enable long-term quantification of land cover fragmentation. 展开更多
关键词 Land Cover FRAGMENTATION Katanga remote sensing
下载PDF
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar 被引量:1
3
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar remoting sensing Atmospheric pollution
下载PDF
Monitoring the green evolution of vernacular buildings based on deep learning and multi-temporal remote sensing images
4
作者 Baohua Wen Fan Peng +4 位作者 Qingxin Yang Ting Lu Beifang Bai Shihai Wu Feng Xu 《Building Simulation》 SCIE EI CSCD 2023年第2期151-168,共18页
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut... The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs. 展开更多
关键词 courtyard buildings EVOLUTION deep learning high-resolution network remote sensing images
原文传递
CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation
5
作者 Qixiang Tong Zhipeng Zhu +2 位作者 Min Zhang Kerui Cao Haihua Xing 《Computers, Materials & Continua》 SCIE EI 2024年第4期1353-1375,共23页
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d... High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks. 展开更多
关键词 Semantic segmentation remote sensing multiscale self-attention
下载PDF
Determining the planting year of navel orange trees in mountainous and hilly areas of southern China:a remote sensing based method
6
作者 LEI Juncheng WANG Sha +1 位作者 WANG Yuandong LUO Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3293-3305,共13页
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th... Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination. 展开更多
关键词 Time series remote sensing Google Earth Engine Gannan SUBTROPICS
下载PDF
Remote sensing of quality traits in cereal and arable production systems:A review
7
作者 Zhenhai Li Chengzhi Fan +8 位作者 Yu Zhao Xiuliang Jin Raffaele Casa Wenjiang Huang Xiaoyu Song Gerald Blasch Guijun Yang James Taylor Zhenhong Li 《The Crop Journal》 SCIE CSCD 2024年第1期45-57,共13页
Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c... Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data. 展开更多
关键词 remote sensing Quality traits Grain protein CEREAL
下载PDF
Quantifying glacier surging and associated lake dynamics in Amu Darya river basin using UAV and remote sensing data
8
作者 SAFAROV Mustafo KANG Shichang +5 位作者 MURODOV Murodkhudzha BANERJEE Abhishek NAVRUZSHOEV Hofiz GULAYOZOV Majid FAZYLOV Ali VOSIDOV Firdavs 《Journal of Mountain Science》 SCIE CSCD 2024年第9期2967-2985,共19页
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab... Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks. 展开更多
关键词 UAV remote sensing Climate change Glacier dynamics Google Earth Engine PAMIR
下载PDF
Using ontology and rules to retrieve the semantics of disaster remote sensing data
9
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
下载PDF
Improved YOLOX Remote Sensing Image Object Detection Algorithm
10
作者 LIU Beibei DENG Yansong +3 位作者 LYU He ZHOU Chenchen TANG Xuezhi XIANG Wei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第5期439-452,共14页
Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensin... Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset. 展开更多
关键词 remote sensing images object detection YOLOX-S attention module loss function
原文传递
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
11
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD TRANSFORMER image segmentation remotely sensed imagery pyramid vision transformer
下载PDF
Untethered Micro/Nanorobots for Remote Sensing:Toward Intelligent Platform
12
作者 Qianqian Wang Shihao Yang Li Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期450-483,共34页
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d... Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications. 展开更多
关键词 Micro/nanorobot remote sensing Wireless control SELF-PROPULSION Actuation at small scales
下载PDF
ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images
13
作者 Jing Wang Chen Zhang Tianwen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第8期1907-1925,共19页
When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in inco... When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images. 展开更多
关键词 Deep learning semantic segmentation remote sensing imagery road extraction
下载PDF
Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection
14
作者 Hongchi Liu Xing Deng Haijian Shao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2397-2424,共28页
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot... The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality. 展开更多
关键词 remote sensing image image dehazing deep learning feature fusion
下载PDF
Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images
15
作者 MAO Zhengjun WANG Munan +3 位作者 CHU Jiwei SUN Jiewen LIANG Wei YU Haiyong 《Journal of Arid Land》 SCIE CSCD 2024年第10期1409-1425,共17页
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ... The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation. 展开更多
关键词 hyperspectral remote sensing abandoned mine ecological restoration vegetation growth status vegetation index vegetation coverage
下载PDF
Modeling urban redevelopment:A novel approach using time-series remote sensing data and machine learning
16
作者 Li Lin Liping Di +6 位作者 Chen Zhang Liying Guo Haoteng Zhao Didarul Islam Hui Li Ziao Liu Gavin Middleton 《Geography and Sustainability》 CSCD 2024年第2期211-219,共9页
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su... Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment. 展开更多
关键词 Urban redevelopment Urban sustainability remote sensing Time-series analysis Machine learning
下载PDF
Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection
17
作者 Chengcheng Fan Zhiruo Fang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4925-4943,共19页
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often... Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection. 展开更多
关键词 Object detection anchor-free detector PROBABILISTIC fully convolutional neural network remote sensing
下载PDF
Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images
18
作者 Supeng Yu Fen Huang Chengcheng Fan 《Computers, Materials & Continua》 SCIE EI 2024年第4期549-562,共14页
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human... Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods. 展开更多
关键词 Semantic segmentation road extraction weakly supervised learning scribble supervision remote sensing image
下载PDF
Estimation and verification of green tide biomass based on UAV remote sensing
19
作者 Xiaopeng JIANG Zhiqiang GAO Zhicheng WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1216-1226,共11页
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,... Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management. 展开更多
关键词 green tide biomass estimation quantitative technique Yellow Sea unmanned aerial vehicle(UAV) remote sensing(RS)
下载PDF
Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed
20
作者 Zhe CHANG Lina SUN +4 位作者 Tengfei LIU Meng ZHANG Keda LIANG Junmin MENG Jing WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期408-420,共13页
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt... Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging. 展开更多
关键词 internal solitary wave(ISW) optical remote sensing wind speed characteristics of ISWs bands
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部