The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress...The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work,the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method(FEM). The convergent stresses have good agreements with those results obtained by three dimensional(3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.展开更多
The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and ...The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.展开更多
The paper develops the local convergence of Inexact Newton-Like Method(INLM)for approximating solutions of nonlinear equations in Banach space setting.We employ weak Lipschitz and center-weak Lipschitz conditions to p...The paper develops the local convergence of Inexact Newton-Like Method(INLM)for approximating solutions of nonlinear equations in Banach space setting.We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis.The obtained results compare favorably with earlier ones such as[7,13,14,18,19].A numerical example is also provided.展开更多
A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the d...A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the dominating function may have only one simple positive zero, assuming that the operator is weak Lipschitz continuous, which is much more relaxed and can be checked much more easily than Lipschitz continuous in practice. It is demonstrated that a Chen' s approximate zero may not be a Smale' s approximate zero. The error estimate obtained indicated the convergent order when we use |f(x) | < ε to stop computation in software.The result can also be applied for solving partial derivative and integration equations.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11372145, 11372146, and 11272161)the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant MCMS-0516Y01)+1 种基金Zhejiang Provincial Top Key Discipline of Mechanics Open Foundation (Grant xklx1601)the K. C. Wong Magna Fund through Ningbo University
文摘The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work,the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method(FEM). The convergent stresses have good agreements with those results obtained by three dimensional(3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.
基金Project supported by the National Natural Science Foundation of China (No. 10271025)the Program for New Century Excellent Talents in University of China
文摘The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.
文摘The paper develops the local convergence of Inexact Newton-Like Method(INLM)for approximating solutions of nonlinear equations in Banach space setting.We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis.The obtained results compare favorably with earlier ones such as[7,13,14,18,19].A numerical example is also provided.
文摘A judgment criterion to guarantee a point to be a Chen' s approximate zero of Newton method for solving nonlinear equation is sought by dominating sequence techniques. The criterion is based on the fact that the dominating function may have only one simple positive zero, assuming that the operator is weak Lipschitz continuous, which is much more relaxed and can be checked much more easily than Lipschitz continuous in practice. It is demonstrated that a Chen' s approximate zero may not be a Smale' s approximate zero. The error estimate obtained indicated the convergent order when we use |f(x) | < ε to stop computation in software.The result can also be applied for solving partial derivative and integration equations.