期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Key Technologies for Design of Changqing Yellow River Super-long Bridge of Zhengzhou Ji'nan HSR
1
作者 ZUO Jiaqiang ZHANG Shang +3 位作者 MA Chenlong WANG Zongfeng ZHANG Hai ZHENG Mingda(Translated) 《Chinese Railways》 2023年第2期3-11,共9页
Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge de... Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge design,and the main conclusions are as follows:The whole unit adopts the supporting system of tower pier consolidation and tower-beam separation,and each pier is provided with seismic mitigation and isolation bearing;shaped-steel reinforced concrete bridge tower is adopted to bring into full play the tensile performance of steel and the compressive performance of concrete,and avoid the construction challenges of setting up multi-layer and multi-stirrup reinforcement while improving the bearing capacity of section;a new type of double-side and bi-directional anti-skid anchorage device is adopted for the cable saddle of wire divider pipe in order to withstand the unbalanced cable force,and verify the reliability of the anti-skid anchorage device by solid model test;and large-segment cantilever pouring design is adopted for the main girder with a maximum segment length of 8 m to effectively shorten the construction period of the bridge. 展开更多
关键词 Zhengzhou-Ji'nan HSR Changqing Yellow River Super-long bridge partial cable stayed bridge multi-tower cable-stayed bridge multiple span and long connection bridge design
下载PDF
Damping Identification of Bridges Under Nonstationary Ambient Vibration 被引量:5
2
作者 Sunjoong Kim Ho-Kyung Kim 《Engineering》 SCIE EI 2017年第6期839-844,共6页
This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (... This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (OMA) based on a stationary white noise assumption for input signals. However, most bridges are generally subjected to nonstationary excitations while in service, and this violation of the basic assumption can lead to uncertainties in damping identification. To deal with nonstationarity, an amplitude-modulating function was calculated from measured responses to eliminate global trends caused by nonstationary input. A natural excitation technique (NExT)-eigensystem realization algorithm (ERA) was applied to estimate the damping ratio for a stationarized process. To improve the accuracy of OMA-based damping estimates, a comparative analysis was performed between an extracted stationary process and nonstationary data to assess the effect of eliminating nonstationarity. The mean value and standard deviation of the damping ratio for the first vertical mode decreased after signal stationarization. 展开更多
关键词 DAMPING Operational modal analysis Traffic-induced vibration NONSTATIONARY Signal stationarization Amplitude-modulating bridge cable-stayed suspension
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部