This paper extends the previously developed method of optimizing Road Weather Information Systems(RWIS)station placement by unveiling a sophisticated multi-variable semivariogram model that concurrently considers mult...This paper extends the previously developed method of optimizing Road Weather Information Systems(RWIS)station placement by unveiling a sophisticated multi-variable semivariogram model that concurrently considers multiple vital road weather variables.Previous research primarily centered on single-variable analysis focusing on road surface temperature(RST).The study bridges this oversight by introducing a framework that integrates multiple critical weather variables into the RWIS location allocation framework.This novel approach ensures balanced and equitable RWIS distribution across zones and aligns the network with areas both prone to traffic accidents and areas of high uncertainty.To demonstrate the effectiveness of this refinement,the authors applied the framework to Maine’s existing RWIS network,conducted a gap analysis through varying planning scenarios and generated optimal solutions using a heuristic optimization algorithm.The analysis identified areas that would benefit most from additional RWIS stations and guided optimal resource utilization across different road types and priority locations.A sensitivity analysis was also performed to evaluate the effect of different weightings for weather and traffic factors on the selection of optimal locations.The location solutions generated have been adopted by MaineDOT for future implementations,attesting to the model’s practicality and signifying an important advancement for more effective management of road weather conditions.展开更多
This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t...This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou...Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a ...The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a new control strategy- prediction control-and its application in Multi-Variable Control Process.The research result is worthy for automatic control in pro- cess industry.展开更多
Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differen...Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differentials of unitary indeterminate forms. The fruit of this work is going to be reported in three parts. The first part presents the standard analysis on this subject which supplements, systematizes and advances L. Hospital抯 principles on differential calculus by applying special ,general, and limit guaranteeing theories together with K(t) and XhK0 theories. The combination of theoretical analysis and geometric signification makes the derivation intuitional, visual and easy to perceive.展开更多
Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and applicatio...Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and application of Xh?K0. Fundamental factors for numerical simplification are provided respectively for bi-variable indeterminate forms, tri-variable indeterminate forms and the universal extending multiplier.展开更多
By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variable...By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.展开更多
Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and wea...Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.展开更多
The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially ...The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and hetero- geneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi- variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorre- lation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy as- sessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.展开更多
Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to me...Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.展开更多
Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integr...Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integral formulas involving the two special polynomials.Instead of calculating compli-cated partial differential,we use the special polynomials and their generating functions to concsely address the normalzation,photoount distributions and Wigner distributions of several quantum states that can be realized physically,the rsults of which provide real convenience for further investigating the properties and applications of these states.展开更多
It is well known that Landsat TM images are the most widely used remote sensing data in various fields.Usually,it has 7 different electromagnetic spectrum bands,among which the sixth one has much lower ground resoluti...It is well known that Landsat TM images are the most widely used remote sensing data in various fields.Usually,it has 7 different electromagnetic spectrum bands,among which the sixth one has much lower ground resolution compared with the other six bands.Nevertheless,it is useful in the study of rock spectrum reflection,geothermal resources exploration,etc.To improve the ground resolution of TM6 to the level as that of the other six bands is a problem .This paper presents an algorithm based on the combination of multivariate regression model with semivariogram function which can improve the ground resolution of TM6 by "fusing" the data of other six bands.It includes the following main steps: (1) testing the correlation between TM6 and one of TM15,7.If the correlation coefficient between TM6 and another one is greater than a given threshold value,then select the band to the regression analysis as an argument.(2) calculating the size of the template window within which some parameters needed by the regression model will be calculated; (3) replacing the original pixel values of TM6 by those obtained by regression analysis; (4) using image entropy as a measurement to evaluate the quality of the fused image of TM6.The basic mechanism of the algorithm is discussed and the V C ++ program for implementing this algorithm is also presented.A simple application example is given in the last part of this paper,showing the effectiveness of the algorithm.展开更多
As an active defenses technique,multivariant execution(MVX)can detect attacks by monitoring the consistency of heterogeneous variants with parallel execution.Compared with patch-style passive defense,MVX can defend ag...As an active defenses technique,multivariant execution(MVX)can detect attacks by monitoring the consistency of heterogeneous variants with parallel execution.Compared with patch-style passive defense,MVX can defend against known and even unknown vulnerability-based attacks without relying on attack feature information.However,variants generated with software diversity technologies will introduce new vulnerabilities when they execute in parallel.First,we analyze the security of MVX theory from the perspective of formal description.Then we summarize the general forms and techniques for attacks against MVX,and analyze the new vulnerabilities arising from the combination of variant generation technologies.We propose SecMVX,a secure MVX architecture and variant generation technology.Experimental evaluations based on CVEs and SPEC 2006 benchmark show that SecMVX introduces 11.29%of the average time overhead,and avoids vulnerabilities caused by the improper combination of variant generation technologies while keeping the defensive ability of MVX.展开更多
The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup&g...The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.展开更多
The present status of self-elevating drilling units was analysed. Based on statistics of the main dimensions of self-elevating drilling units, a mathematical model was established using stepwise return procedures and ...The present status of self-elevating drilling units was analysed. Based on statistics of the main dimensions of self-elevating drilling units, a mathematical model was established using stepwise return procedures and a back-propagation neural network. mathematical model is applicable and reliable. The of the main dimensions of self-elevating drilling Analysis of examples of calculations showed that the model is useful for mastering the essential variations units and can be used for technical and economic analysis as well as in conceptual designs of drilling units.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling...The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.展开更多
基金supported by a grant from the MaineDOT and Vanasse Hangen Brustlin(VHB).Grant number:VHB 52874.03 WIN 026140.00,Name of the author who received the funding:Tae J.Kwon.
文摘This paper extends the previously developed method of optimizing Road Weather Information Systems(RWIS)station placement by unveiling a sophisticated multi-variable semivariogram model that concurrently considers multiple vital road weather variables.Previous research primarily centered on single-variable analysis focusing on road surface temperature(RST).The study bridges this oversight by introducing a framework that integrates multiple critical weather variables into the RWIS location allocation framework.This novel approach ensures balanced and equitable RWIS distribution across zones and aligns the network with areas both prone to traffic accidents and areas of high uncertainty.To demonstrate the effectiveness of this refinement,the authors applied the framework to Maine’s existing RWIS network,conducted a gap analysis through varying planning scenarios and generated optimal solutions using a heuristic optimization algorithm.The analysis identified areas that would benefit most from additional RWIS stations and guided optimal resource utilization across different road types and priority locations.A sensitivity analysis was also performed to evaluate the effect of different weightings for weather and traffic factors on the selection of optimal locations.The location solutions generated have been adopted by MaineDOT for future implementations,attesting to the model’s practicality and signifying an important advancement for more effective management of road weather conditions.
文摘This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems (MVDPP) of the form x′(t)=f(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), and εy′(t)=g(x(t),x(t-τ 1(t)),...,x(t-τ m(t)),y(t),y(t-τ 1(t)),...,y(t-τ m(t))), where 0<ε1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
文摘The modern industrial control objects become more and more complicated,and higher control quality is required, so a series of new control strategies appear,applied,modified and develop quickly.This paper researches a new control strategy- prediction control-and its application in Multi-Variable Control Process.The research result is worthy for automatic control in pro- cess industry.
文摘Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differentials of unitary indeterminate forms. The fruit of this work is going to be reported in three parts. The first part presents the standard analysis on this subject which supplements, systematizes and advances L. Hospital抯 principles on differential calculus by applying special ,general, and limit guaranteeing theories together with K(t) and XhK0 theories. The combination of theoretical analysis and geometric signification makes the derivation intuitional, visual and easy to perceive.
文摘Various transforms of the indeterminate forms are presented in this part, which include simplification in spherical coordinates, origin translation, axis alteration, transformation of limit conservation and application of Xh?K0. Fundamental factors for numerical simplification are provided respectively for bi-variable indeterminate forms, tri-variable indeterminate forms and the universal extending multiplier.
文摘By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
文摘Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.
基金supported by the Chinese Ministry of Environmental Protection(No.STSN-05-11)Zhejiang Key Scientific and Technological Innovation Team Projects(No.2010R50030)the National Natural Science Foundation of China(No.31172023)
文摘The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and hetero- geneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi- variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorre- lation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy as- sessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.
基金the Key Scientific Research Fund Project of Xihua University(No.Z1320406)the National Natural Science Foundation of China(No.51379179)
文摘Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.
基金the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province(Grant Nos.ZR2016AM03 and ZR2017M A011).
文摘Using an operator ordering method for some commutative superposition operators,we introduce two new multi-variable special polynomials and their generating functions,and present some new operator identities and integral formulas involving the two special polynomials.Instead of calculating compli-cated partial differential,we use the special polynomials and their generating functions to concsely address the normalzation,photoount distributions and Wigner distributions of several quantum states that can be realized physically,the rsults of which provide real convenience for further investigating the properties and applications of these states.
文摘It is well known that Landsat TM images are the most widely used remote sensing data in various fields.Usually,it has 7 different electromagnetic spectrum bands,among which the sixth one has much lower ground resolution compared with the other six bands.Nevertheless,it is useful in the study of rock spectrum reflection,geothermal resources exploration,etc.To improve the ground resolution of TM6 to the level as that of the other six bands is a problem .This paper presents an algorithm based on the combination of multivariate regression model with semivariogram function which can improve the ground resolution of TM6 by "fusing" the data of other six bands.It includes the following main steps: (1) testing the correlation between TM6 and one of TM15,7.If the correlation coefficient between TM6 and another one is greater than a given threshold value,then select the band to the regression analysis as an argument.(2) calculating the size of the template window within which some parameters needed by the regression model will be calculated; (3) replacing the original pixel values of TM6 by those obtained by regression analysis; (4) using image entropy as a measurement to evaluate the quality of the fused image of TM6.The basic mechanism of the algorithm is discussed and the V C ++ program for implementing this algorithm is also presented.A simple application example is given in the last part of this paper,showing the effectiveness of the algorithm.
基金National Key Research and Development Program of China(Grant No.2018YF0804003)the National Key Research and Development Program of China under Grant No.2017YFB0803204.
文摘As an active defenses technique,multivariant execution(MVX)can detect attacks by monitoring the consistency of heterogeneous variants with parallel execution.Compared with patch-style passive defense,MVX can defend against known and even unknown vulnerability-based attacks without relying on attack feature information.However,variants generated with software diversity technologies will introduce new vulnerabilities when they execute in parallel.First,we analyze the security of MVX theory from the perspective of formal description.Then we summarize the general forms and techniques for attacks against MVX,and analyze the new vulnerabilities arising from the combination of variant generation technologies.We propose SecMVX,a secure MVX architecture and variant generation technology.Experimental evaluations based on CVEs and SPEC 2006 benchmark show that SecMVX introduces 11.29%of the average time overhead,and avoids vulnerabilities caused by the improper combination of variant generation technologies while keeping the defensive ability of MVX.
文摘The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.
基金Supported by the National 863 Plan Foundation under Grant No.2003AA414060
文摘The present status of self-elevating drilling units was analysed. Based on statistics of the main dimensions of self-elevating drilling units, a mathematical model was established using stepwise return procedures and a back-propagation neural network. mathematical model is applicable and reliable. The of the main dimensions of self-elevating drilling Analysis of examples of calculations showed that the model is useful for mastering the essential variations units and can be used for technical and economic analysis as well as in conceptual designs of drilling units.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062)the National Basic Research Program of China (2007CB714000)
文摘The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.