期刊文献+
共找到28,413篇文章
< 1 2 250 >
每页显示 20 50 100
Bayesian model averaging(BMA)for nuclear data evaluation
1
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 Bayesian model averaging(BMA) Nuclear data Nuclear reaction models model parameters TALYS code system Covariances
下载PDF
Assessment of the three representative empirical models for zenith tropospheric delay(ZTD)using the CMONOC data
2
作者 Debao Yuan Jian Li +4 位作者 Yifan Yao Fei Yang Yingying Wang Ran Chen Tairan Xu 《Geodesy and Geodynamics》 EI CSCD 2024年第5期488-494,共7页
The precise correction of atmospheric zenith tropospheric delay(ZTD)is significant for the Global Navigation Satellite System(GNSS)performance regarding positioning accuracy and convergence time.In the past decades,ma... The precise correction of atmospheric zenith tropospheric delay(ZTD)is significant for the Global Navigation Satellite System(GNSS)performance regarding positioning accuracy and convergence time.In the past decades,many empirical ZTD models based on whether the gridded or scattered ZTD products have been proposed and widely used in the GNSS positioning applications.But there is no comprehensive evaluation of these models for the whole China region,which features complicated topography and climate.In this study,we completely assess the typical empirical models,the IGGtropSH model(gridded,non-meteorology),the SHAtropE model(scattered,non-meteorology),and the GPT3 model(gridded,meteorology)using the Crustal Movement Observation Network of China(CMONOC)network.In general,the results show that the three models share consistent performance with RMSE/bias of 37.45/1.63,37.13/2.20,and 38.27/1.34 mm for the GPT3,SHAtropE and IGGtropSH model,respectively.However,the models had a distinct performance regarding geographical distribution,elevation,seasonal variations,and daily variation.In the southeastern region of China,RMSE values are around 50 mm,which are much higher than that in the western region,approximately 20 mm.The SHAtropE model exhibits better performance for areas with large variations in elevation.The GPT3 model and the IGGtropSH model are more stable across different months,and the SHAtropE model based on the GNSS data exhibits superior performance across various UTC epochs. 展开更多
关键词 GNSS Zenith tropospheric delay Empirical ZTD model CMONOC data
下载PDF
A Stochastic Model to Assess the Epidemiological Impact of Vaccine Booster Doses on COVID-19 and Viral Hepatitis B Co-Dynamics with Real Data
3
作者 Andrew Omame Mujahid Abbas Dumitru Baleanu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2973-3012,共40页
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi... A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted. 展开更多
关键词 Viral hepatitis B COVID-19 stochastic model EXTINCTION ERGODICITY real data
下载PDF
A data and physical model dual-driven based trajectory estimator for long-term navigation
4
作者 Tao Feng Yu Liu +2 位作者 Yue Yu Liang Chen Ruizhi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期78-90,共13页
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ... Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively. 展开更多
关键词 Long-term navigation Wearable inertial sensors Bi-LSTM QSMF data and physical model dual-driven
下载PDF
Dominant woody plant species recognition with a hierarchical model based on multimodal geospatial data for subtropical forests
5
作者 Xin Chen Yujun Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期111-130,共20页
Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully... Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring. 展开更多
关键词 Google Earth Engine SENTINEL Forest resource inventory data Dominant woody plant species SUBTROPICS model performance
下载PDF
Analysis of Secured Cloud Data Storage Model for Information
6
作者 Emmanuel Nwabueze Ekwonwune Udo Chukwuebuka Chigozie +1 位作者 Duroha Austin Ekekwe Georgina Chekwube Nwankwo 《Journal of Software Engineering and Applications》 2024年第5期297-320,共24页
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac... This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system. 展开更多
关键词 CLOUD data Information model data Storage Cloud Computing Security System data Encryption
下载PDF
Intelligent Energy Utilization Analysis Using IUA-SMD Model Based Optimization Technique for Smart Metering Data
7
作者 K.Rama Devi V.Srinivasan +1 位作者 G.Clara Barathi Priyadharshini J.Gokulapriya 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期90-98,共9页
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d... Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data. 展开更多
关键词 electricity consumption predictive model data analytics smart metering machine learning
下载PDF
Finer topographic data improves distribution modeling of Picea crassifolia in the northern Qilian Mountains
8
作者 ZHANG Xiang GAO Linlin +3 位作者 LUO Yu YUAN Yiyun MA Baolong DENG Yang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3306-3317,共12页
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha... The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance. 展开更多
关键词 Species distribution modeling Picea crassifolia High resolution topographic data Climate change Qilian Mountains Nature Reserve Climate scenarios
下载PDF
An approach to estimate tree height using PolInSAR data constructed by the Sentinel-1 dual-pol SAR data and RVoG model
9
作者 Yin Zhang Ding-Feng Duan 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期69-79,共11页
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se... We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season. 展开更多
关键词 Constructed polarimetric SAR data Dual polarization Sentinel-1 SAR data Polarimetric interferometric SAR Random volume over the ground model Tree height estimation
下载PDF
Ensemble Modeling for the Classification of Birth Data
10
作者 Fiaz Majeed Abdul Razzaq Ahmad Shakir +6 位作者 Maqbool Ahmad Shahzada Khurram Muhammad Qaiser Saleem Muhammad Shafiq Jin-Ghoo Choi Habib Hamam Osama E.Sheta 《Intelligent Automation & Soft Computing》 2024年第4期765-781,共17页
Machine learning(ML)and data mining are used in various fields such as data analysis,prediction,image processing and especially in healthcare.Researchers in the past decade have focused on applying ML and data mining ... Machine learning(ML)and data mining are used in various fields such as data analysis,prediction,image processing and especially in healthcare.Researchers in the past decade have focused on applying ML and data mining to generate conclusions from historical data in order to improve healthcare systems by making predictions about the results.Using ML algorithms,researchers have developed applications for decision support,analyzed clinical aspects,extracted informative information from historical data,predicted the outcomes and categorized diseases which help physicians make better decisions.It is observed that there is a huge difference between women depending on the region and their social lives.Due to these differences,scholars have been encouraged to conduct studies at a local level in order to better understand those factors that affect maternal health and the expected child.In this study,the ensemble modeling technique is applied to classify birth outcomes based on either cesarean section(C-Section)or normal delivery.A voting ensemble model for the classification of a birth dataset was made by using a Random Forest(RF),Gradient Boosting Classifier,Extra Trees Classifier and Bagging Classifier as base learners.It is observed that the voting ensemble modal of proposed classifiers provides the best accuracy,i.e.,94.78%,as compared to the individual classifiers.ML algorithms are more accurate due to ensemble models,which reduce variance and classification errors.It is reported that when a suitable classification model has been developed for birth classification,decision support systems can be created to enable clinicians to gain in-depth insights into the patterns in the datasets.Developing such a system will not only allow health organizations to improve maternal health assessment processes,but also open doors for interdisciplinary research in two different fields in the region. 展开更多
关键词 Birth data classification ensemble model machine learning
下载PDF
Research and Construction of Personalized Sleep Model Based on Questionnaire Data
11
作者 Feng Ji Yuan An +3 位作者 Yawen Xing Haoran Guan Sitian Yang Panfeng Yuan 《Journal of Computer and Communications》 2024年第11期108-119,共12页
The purpose of this study is to investigate the sleep habits, cervical health status, and the demand and preference for pillow products of different populations through data analysis. A total of 780 valid responses we... The purpose of this study is to investigate the sleep habits, cervical health status, and the demand and preference for pillow products of different populations through data analysis. A total of 780 valid responses were gathered via an online questionnaire to explore the sleep habits, cervical health conditions, and pillow product preferences of modern individuals. The study found that sleeping late and staying up late are common, and the use of electronic devices and caffeine consumption have a negative impact on sleep. Most respondents have cervical discomfort and have varying satisfaction with pillows, which shows their demand for personalized pillows. The machine learning model for predicting the demand of latex pillow was constructed and optimized to provide personalized pillow recommendation, aiming to improve sleep quality and provide market data for sleep product developers. 展开更多
关键词 Sleep model PERSONALIZATION Questionnaire Survey data Analysis
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
12
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional data Linear Regression model Least Square Method Robust Least Square Method Synthetic data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-Nearest Neighbor and Mean imputation
下载PDF
Supplier Data Association Portrait Model Based on Improved Fuzzy Algorithm
13
作者 GAN Dejun LIU Shuyang +2 位作者 HAN Zhihong HUANG Zhiyuan LI Shenshen 《International Journal of Plant Engineering and Management》 2024年第4期213-234,共22页
With the advent of the Big Data era,the amount of data on supplier information is increasing geometrically.Buyers want to use this data to find high quality suppliers before purchasing,so as to reduce transaction risk... With the advent of the Big Data era,the amount of data on supplier information is increasing geometrically.Buyers want to use this data to find high quality suppliers before purchasing,so as to reduce transaction risks and guarantee transaction quality.Supplier portraits under big data can not only help buyers select high quality suppliers,but also monitor the abnormal behavior of suppliers in real time.In this paper,the supplier data under big data are normalized,correlation analysis is performed,ratings are assigned,and classification is made through fuzzy calculation to give some reference and provide early warning tips for buyers.In addition,this paper is based on the data of active suppliers in the Jiangxi Open Data Innovation Application Competition,and realizes the data mining of two⁃dimensional labels and statistical types,thus forming the supplier portrait model.This paper aims to study supplier data analysis in the big data environment,hoping to provide some suggestions and guidances for the procurement work of related governments,enterprises and individuals. 展开更多
关键词 big data data mining open innovation try monitoring portrait modeling
下载PDF
Data for critical infrastructure network modelling of natural hazard impacts:Needs and influence on model characteristics
14
作者 Roman Schotten Evelyn Mühlhofer +3 位作者 Georgios-Alexandros Chatzistefanou Daniel Bachmann Albert S.Chen Elco E.Koks 《Resilient Cities and Structures》 2024年第1期55-65,共11页
Natural hazards impact interdependent infrastructure networks that keep modern society functional.While a va-riety of modelling approaches are available to represent critical infrastructure networks(CINs)on different ... Natural hazards impact interdependent infrastructure networks that keep modern society functional.While a va-riety of modelling approaches are available to represent critical infrastructure networks(CINs)on different scales and analyse the impacts of natural hazards,a recurring challenge for all modelling approaches is the availability and accessibility of sufficiently high-quality input and validation data.The resulting data gaps often require mod-ellers to assume specific technical parameters,functional relationships,and system behaviours.In other cases,expert knowledge from one sector is extrapolated to other sectoral structures or even cross-sectorally applied to fill data gaps.The uncertainties introduced by these assumptions and extrapolations and their influence on the quality of modelling outcomes are often poorly understood and difficult to capture,thereby eroding the reliability of these models to guide resilience enhancements.Additionally,ways of overcoming the data avail-ability challenges in CIN modelling,with respect to each modelling purpose,remain an open question.To address these challenges,a generic modelling workflow is derived from existing modelling approaches to examine model definition and validations,as well as the six CIN modelling stages,including mapping of infrastructure assets,quantification of dependencies,assessment of natural hazard impacts,response&recovery,quantification of CI services,and adaptation measures.The data requirements of each stage were systematically defined,and the literature on potential sources was reviewed to enhance data collection and raise awareness of potential pitfalls.The application of the derived workflow funnels into a framework to assess data availability challenges.This is shown through three case studies,taking into account their different modelling purposes:hazard hotspot assess-ments,hazard risk management,and sectoral adaptation.Based on the three model purpose types provided,a framework is suggested to explore the implications of data scarcity for certain data types,as well as their reasons and consequences for CIN model reliability.Finally,a discussion on overcoming the challenges of data scarcity is presented. 展开更多
关键词 Critical infrastructure networks Impact modelling data availability Natural hazards
下载PDF
Contribution of the MERISE-Type Conceptual Data Model to the Construction of Monitoring and Evaluation Indicators of the Effectiveness of Training in Relation to the Needs of the Labor Market in the Republic of Congo
15
作者 Roch Corneille Ngoubou Basile Guy Richard Bossoto Régis Babindamana 《Open Journal of Applied Sciences》 2024年第8期2187-2200,共14页
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct... This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation. 展开更多
关键词 MERISE Conceptual data model (MCD) Monitoring Indicators Evaluation of Training Effectiveness Training-Employment Adequacy Labor Market Information Systems Analysis Adjustment of Training Programs EMPLOYABILITY Professional Skills
下载PDF
A panel data model to predict airline passenger volume
16
作者 Xiaoting Wang Junyu Cai Junyan Wang 《Digital Transportation and Safety》 2024年第2期46-52,共7页
Airline passenger volume is an important reference for the implementation of aviation capacity and route adjustment plans.This paper explores the determinants of airline passenger volume and proposes a comprehensive p... Airline passenger volume is an important reference for the implementation of aviation capacity and route adjustment plans.This paper explores the determinants of airline passenger volume and proposes a comprehensive panel data model for predicting volume.First,potential factors influencing airline passenger volume are analyzed from Geo-economic and service-related aspects.Second,the principal component analysis(PCA)is applied to identify key factors that impact the airline passenger volume of city pairs.Then the panel data model is estimated using 120 sets of data,which are a collection of observations for multiple subjects at multiple instances.Finally,the airline data from Chongqing to Shanghai,from 2003 to 2012,was used as a test case to verify the validity of the prediction model.Results show that railway and highway transportation assumed a certain proportion of passenger volumes,and total retail sales of consumer goods in the departure and arrival cities are significantly associated with airline passenger volume.According to the validity test results,the prediction accuracies of the model for 10 sets of data are all greater than 90%.The model performs better than a multivariate regression model,thus assisting airport operators decide which routes to adjust and which new routes to introduce. 展开更多
关键词 Airline passenger volume Traffic prediction Panel data model Airline route decision Transportation engineering
下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
17
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
下载PDF
Irregular seismic data reconstruction based on exponential threshold model of POCS method 被引量:16
18
作者 高建军 陈小宏 +2 位作者 李景叶 刘国昌 马剑 《Applied Geophysics》 SCIE CSCD 2010年第3期229-238,292,293,共12页
Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data... Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable. 展开更多
关键词 Irregular missing traces seismic data reconstruction POCS threshold model.
下载PDF
Database-oriented storage based on LMDB and linear octree for massive block model 被引量:6
19
作者 毕林 赵辉 贾明涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2462-2468,共7页
Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of storing massive data of block model is proposed to meet the characteristics of the database, incl... Data organization requires high efficiency for large amount of data applied in the digital mine system. A new method of storing massive data of block model is proposed to meet the characteristics of the database, including ACID-compliant, concurrency support, data sharing, and efficient access. Each block model is organized by linear octree, stored in LMDB(lightning memory-mapped database). Geological attribute can be queried at any point of 3D space by comparison algorithm of location code and conversion algorithm from address code of geometry space to location code of storage. The performance and robustness of querying geological attribute at 3D spatial region are enhanced greatly by the transformation from 3D to 2D and the method of 2D grid scanning to screen the inner and outer points. Experimental results showed that this method can access the massive data of block model, meeting the database characteristics. The method with LMDB is at least 3 times faster than that with etree, especially when it is used to read. In addition, the larger the amount of data is processed, the more efficient the method would be. 展开更多
关键词 block model linear octree lightning memory-mapped database mass data access digital mine etree
下载PDF
SAR Data Assimilation for Crop Biomass Simulation Based on Crop Growth Model 被引量:3
20
作者 谭正 刘湘南 +1 位作者 张晓倩 吴伶 《Agricultural Science & Technology》 CAS 2012年第5期1127-1132,共6页
Biomass from SAR data was assimilated into crop growth model to describe relationship between crop biomass and crop growth time to improve estimation accuracy of biomass. In addition, inverse model was established in ... Biomass from SAR data was assimilated into crop growth model to describe relationship between crop biomass and crop growth time to improve estimation accuracy of biomass. In addition, inverse model was established in order to estimate biomass according to relationship between biomass and backscattering coefficients from SAR data. Based on cost function, parameters of growth model were optimized as per conjugate gradient method, minimizing the differences between estimated biomass and inversion values from SAR data. The results indicated that the simulated biomass using the revised growth model with SAR data was consistent with the measured one in time distribution and even higher in accuracy than that without SAR data. Hence, the key parameters of crop growth model could be revised by real-time growth information from SAR data and accuracy of the simulated biomass could be improved accordingly. 展开更多
关键词 data assimilation BIOMASS SAR Crop growth model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部