Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses...Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.展开更多
Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into...Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.展开更多
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha...Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.展开更多
Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-as...Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.展开更多
In this work, multi-walled carbon nanotubes (MWCNTs)-epoxy composites with MWCNTs (outer diameter less 8 nm) loadings from 1 to 10 wt% were fabricated. The microstructures, dielectric constant, and microwave absorptio...In this work, multi-walled carbon nanotubes (MWCNTs)-epoxy composites with MWCNTs (outer diameter less 8 nm) loadings from 1 to 10 wt% were fabricated. The microstructures, dielectric constant, and microwave absorption properties of the MWCNTs-epoxy composite samples were investigated. The measurement results showed that the microwave absorption ratio of the MWCNTs-epoxy composite strongly depend on the MWCNT loading in the composites. The microwave absorption ratio up to 20%-26% around 18-20 GHz was reached for the samples with 8-10 wt% MWCNT loadings. The high absorption performance is mainly attributed to the microwave absorption of MWCNTs and the dielectric loss of MWCNTs-epoxy composites.展开更多
The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discu...The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.展开更多
The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structur...The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structure of CFRPs has been succeeded by using carbon nanotube-enriched sizing agent for the pretreatment of the fiber preform using an in-house developed methodology that can be easily scaled up. The positive effect of the proposed methodology on the interlaminar fracture toughness of the CFRP laminate was assessed by the increase of Mode I and Mode II interlaminar fracture toughness of the composites. Different wt% MWCNTs concentrations were used (namely 0.5%, 1%, 1.5% and 2.5%). It was found that the nanomodified composites exhibit a significant increase of the interlaminar critical strain energy release rate GIC and GIIC of the order of 103% and 62% respectively, in the case of 1.5 wt% MWCNTs weight content. Scanning Electron Microscopy (SEM) of the fracture surfaces of CFRP samples revealed the contribution and the associated synergistic mechanisms of MWCNTs to the increase of the crack propagation resistance in the case of nano-modified CFRPs compared to the reference material.展开更多
Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen ads...Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency.展开更多
Over the past decade,the interest in aluminum composites reinforced with carbon nanotubes has grown significantly.Studies have been carried out to overcome problems with uniform dispersion,interfacial bonding,void for...Over the past decade,the interest in aluminum composites reinforced with carbon nanotubes has grown significantly.Studies have been carried out to overcome problems with uniform dispersion,interfacial bonding,void formation and carbide formation of the composites.In the present work,multi-wall carbon nanotubes(MWCNTs) aluminum composites were produced.High-energy ball milling with the aim at developing well-dispersed MWCNTs Al composites was followed by cold compaction,sintering,and hot extrusion at 500 ℃.Different amounts of stearic acid as processing control agent(PCA) is used in order to minimize cold welding of the Al particles,and to produce finer particles.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray diffraction(XRD) were employed to analyze the MWCNTs,the aluminum powder,and the composites’ microstructural behavior.The hardness and tensile properties of the composites are also evaluated.The results showed 500% increase in yield stress after the addition of 1 wt% MWCNTs in Al-MWCNTs based composite.The ball-milling time of 4 h is found to be sufficient as excessive milling time destroys a vast number of MWCNTs.展开更多
Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube(CNT)reinforced polymer composites recently.This paper presents the composite cylinder as...Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube(CNT)reinforced polymer composites recently.This paper presents the composite cylinder assemblage(CCA)approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes(MWCNTs).A three-phase cylindrical representative volume element(RVE)model is employed based on CCA technique to elucidate the effects of inter layers,chirality,interspacing,volume fraction of MWCNT,interphase properties and temperature conditions on the elastic modulus of the composite.The interface region between CNT and polymer matrix is modeled as the third phase with varying material properties.The constitutive relations for each material system have been derived based on solid mechanics and proper interfacial traction continuity conditions are imposed.The predicted results from the CCA approach are in well agreement with RVE-based finite element model.The outcomes reveal that temperature softening effect becomes more pronounced at higher volume fractions of CNTs.展开更多
The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical ...The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical and eco-friendly.Reinforcing the metals with carbonaceous nanomaterials are progressively in focus due to their excellent capability to inculcate and tailor the properties of MMCs.In the present research,a hybrid nanocomposite of MWCNT-Graphene-AZ31 Mg alloy has been developed by using variable tool rotation speeds with friction stir processing(FSP).Optimized reinforcement ratio of 1.6%vol.MWCNT and 0.3%vol.of graphene have been used with variable tool rotation speeds,whereas other processing parameters are kept constant.The developed specimens were investigated using standard testing equipment for evaluating and comparing the mechanical properties on the basis of the microstructure of the processing regions and their morphological analysis,according to the ASTM standards.The obtained results revealed an improvement of 19.72%in microhardness and 77.5% of compressive strength in comparison with the base metal AZ 31 Magnesium alloy,with a tool rotational speed of 1400rpm.The values of tensile stress and percentage area reduction were recorded as less than that of the base metal matrix,but an increasing trend has been observed in the values of both with the improvement on rotational speeds of the tool.The effectual strengthening mechanisms are analyzed on the bases of SEM images and observed that discussed and found that grain refinement strengthening is the major contributor to the strength of the nanocomposite.展开更多
Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic...Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-...This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-wailed carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.展开更多
Multi-walled carbon nanotubes(MWCNTs)/TiO_(2)composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),Four...Multi-walled carbon nanotubes(MWCNTs)/TiO_(2)composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),Fourier transform infrared(FT-IR),and UV-vis absorption spectra.Compared to pure TiO_(2),the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region.The photocatalytic performances of the MWCNTs/TiO_(2)composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G(K-6G)and Mordant black 7(MB 7)azo dyes solution under solar light irradiation.The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO_(2)for the degradation of azo dyes K-6G and MB 7.The effect of MWCNTs content,catalyst dosage,pH,and initial dye concentration were examined as operational parameters.The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law.The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%.A plausible mechanism is also proposed and discussed on the basis of experimental results.展开更多
Multi-walled carbon nanotubes (MWNTs) were covalently and non-covalently functionalized with tetra- (4-hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic s...Multi-walled carbon nanotubes (MWNTs) were covalently and non-covalently functionalized with tetra- (4-hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic solution. The morphology of the nanohybrids was observed with transmission electron microscopy. The structure of the product was characterized by FT-IR, UV-Vis spectrophotometer, fluorescence spectroscopy and thermogravim- etric analysis. The photo-induced electron-transfer process of the nanohybrids in organic solution was also revealed.展开更多
The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution. Cationic ...The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution. Cationic surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) was employed to disperse MWCNTs in the Nation matriX, forming a homogeneous and stable dispersion ofnanotubes. The processing did not involve any strong acid treatment and thus effectively preserved the excellent electronic properties associated with MWCNT. The as-obtained MWCNT/Nafion-IPMC actuator was tested in terms of conductivity, bulk and surface morphology, blocking force and electric current. It was shown that the blocking force and the current of the new IPMC are 2.4 times and 1.67 times higher compared with a pure Nation-based IPMC. Moreover, the MWCNT/IPMC performance is much better than previously reported Nafion-IPMC doped by acid-treated MWCNT. Such significantly improved performance should be attributed to the improvement of electrical property associated with the addition of MWCNTs without acid treatment.展开更多
文摘Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.
基金Supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20060183009)
文摘Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.
基金supported by the National Defense Science and Technology Innovation Zone Project (Nos. 17H863-05-ZT-002-040-001 and 18-H863-05-ZT-002-01301
文摘Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.
基金Funded by the National Natural Science Foundation of China (No.50763006)Ministry of Science and Technology R & D Research Institutes (No.2008EG134285)973 Program Special Fund (No.2010CB635109)
文摘Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques.The acid-treated MWCNTs (H2SO4:HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion.In the second assembling,NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex.The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%.Moreover,the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host,and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded,aggregations of MWCNTs are gradually generated,and the tensile strength and crosslink both decrease to a certain extent.
文摘In this work, multi-walled carbon nanotubes (MWCNTs)-epoxy composites with MWCNTs (outer diameter less 8 nm) loadings from 1 to 10 wt% were fabricated. The microstructures, dielectric constant, and microwave absorption properties of the MWCNTs-epoxy composite samples were investigated. The measurement results showed that the microwave absorption ratio of the MWCNTs-epoxy composite strongly depend on the MWCNT loading in the composites. The microwave absorption ratio up to 20%-26% around 18-20 GHz was reached for the samples with 8-10 wt% MWCNT loadings. The high absorption performance is mainly attributed to the microwave absorption of MWCNTs and the dielectric loss of MWCNTs-epoxy composites.
文摘The method of preparing the multi-walled carbon nanotubes (MWNTs)-polyacrylonitriIe (PAN) composite fibers is described and the effects of draw ratio on the mechanical properties of CNT/PAN fibers have also been discussed. The results show that the degrees of MWNTs dispersion in the polymer matrix have much effect on the mechanical properties.
文摘The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structure of CFRPs has been succeeded by using carbon nanotube-enriched sizing agent for the pretreatment of the fiber preform using an in-house developed methodology that can be easily scaled up. The positive effect of the proposed methodology on the interlaminar fracture toughness of the CFRP laminate was assessed by the increase of Mode I and Mode II interlaminar fracture toughness of the composites. Different wt% MWCNTs concentrations were used (namely 0.5%, 1%, 1.5% and 2.5%). It was found that the nanomodified composites exhibit a significant increase of the interlaminar critical strain energy release rate GIC and GIIC of the order of 103% and 62% respectively, in the case of 1.5 wt% MWCNTs weight content. Scanning Electron Microscopy (SEM) of the fracture surfaces of CFRP samples revealed the contribution and the associated synergistic mechanisms of MWCNTs to the increase of the crack propagation resistance in the case of nano-modified CFRPs compared to the reference material.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20703042).
文摘Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency.
文摘Over the past decade,the interest in aluminum composites reinforced with carbon nanotubes has grown significantly.Studies have been carried out to overcome problems with uniform dispersion,interfacial bonding,void formation and carbide formation of the composites.In the present work,multi-wall carbon nanotubes(MWCNTs) aluminum composites were produced.High-energy ball milling with the aim at developing well-dispersed MWCNTs Al composites was followed by cold compaction,sintering,and hot extrusion at 500 ℃.Different amounts of stearic acid as processing control agent(PCA) is used in order to minimize cold welding of the Al particles,and to produce finer particles.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray diffraction(XRD) were employed to analyze the MWCNTs,the aluminum powder,and the composites’ microstructural behavior.The hardness and tensile properties of the composites are also evaluated.The results showed 500% increase in yield stress after the addition of 1 wt% MWCNTs in Al-MWCNTs based composite.The ball-milling time of 4 h is found to be sufficient as excessive milling time destroys a vast number of MWCNTs.
文摘Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube(CNT)reinforced polymer composites recently.This paper presents the composite cylinder assemblage(CCA)approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes(MWCNTs).A three-phase cylindrical representative volume element(RVE)model is employed based on CCA technique to elucidate the effects of inter layers,chirality,interspacing,volume fraction of MWCNT,interphase properties and temperature conditions on the elastic modulus of the composite.The interface region between CNT and polymer matrix is modeled as the third phase with varying material properties.The constitutive relations for each material system have been derived based on solid mechanics and proper interfacial traction continuity conditions are imposed.The predicted results from the CCA approach are in well agreement with RVE-based finite element model.The outcomes reveal that temperature softening effect becomes more pronounced at higher volume fractions of CNTs.
文摘The ever-increasing demand for light weighted hard materials for transportation industries encouraged researchers to develop composites with excellent mechanical properties which can transform it into more economical and eco-friendly.Reinforcing the metals with carbonaceous nanomaterials are progressively in focus due to their excellent capability to inculcate and tailor the properties of MMCs.In the present research,a hybrid nanocomposite of MWCNT-Graphene-AZ31 Mg alloy has been developed by using variable tool rotation speeds with friction stir processing(FSP).Optimized reinforcement ratio of 1.6%vol.MWCNT and 0.3%vol.of graphene have been used with variable tool rotation speeds,whereas other processing parameters are kept constant.The developed specimens were investigated using standard testing equipment for evaluating and comparing the mechanical properties on the basis of the microstructure of the processing regions and their morphological analysis,according to the ASTM standards.The obtained results revealed an improvement of 19.72%in microhardness and 77.5% of compressive strength in comparison with the base metal AZ 31 Magnesium alloy,with a tool rotational speed of 1400rpm.The values of tensile stress and percentage area reduction were recorded as less than that of the base metal matrix,but an increasing trend has been observed in the values of both with the improvement on rotational speeds of the tool.The effectual strengthening mechanisms are analyzed on the bases of SEM images and observed that discussed and found that grain refinement strengthening is the major contributor to the strength of the nanocomposite.
基金supported by the National Natural Science Foundation of China (Nos. 51871068, 51971071, 52011530025, and U21A2049)the National Key Research and Development Program of China (No. 2021YFE0103200)+1 种基金the Zhejiang Province Key Research and Development Program, China (No. 2021C01086)the Fundamental Research Funds for the Central Universities, China (No. 3072021CFT1010)。
文摘Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.
基金supported by the strategic grant POSDRU/88/1.5/S/50783POSDRU/21/1.5/G/13798+1 种基金POSDRU/89/1.5/S/57649 co-financed by the European Social Fund - Investing in People,within the Sectoral Operational Programme Human Resources Development 2007-2013partially by the PN II-RU-PD129/2010 and PN II Ideas 165/2011
文摘This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-wailed carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.
基金the National Natural Science Foundation of China(Grant No.20977013).
文摘Multi-walled carbon nanotubes(MWCNTs)/TiO_(2)composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),Fourier transform infrared(FT-IR),and UV-vis absorption spectra.Compared to pure TiO_(2),the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region.The photocatalytic performances of the MWCNTs/TiO_(2)composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G(K-6G)and Mordant black 7(MB 7)azo dyes solution under solar light irradiation.The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO_(2)for the degradation of azo dyes K-6G and MB 7.The effect of MWCNTs content,catalyst dosage,pH,and initial dye concentration were examined as operational parameters.The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law.The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%.A plausible mechanism is also proposed and discussed on the basis of experimental results.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Nos. 9151503102000006, 7007735).
文摘Multi-walled carbon nanotubes (MWNTs) were covalently and non-covalently functionalized with tetra- (4-hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic solution. The morphology of the nanohybrids was observed with transmission electron microscopy. The structure of the product was characterized by FT-IR, UV-Vis spectrophotometer, fluorescence spectroscopy and thermogravim- etric analysis. The photo-induced electron-transfer process of the nanohybrids in organic solution was also revealed.
基金This paper is financially supported by the National Natural Science Foundation of China (51175251 and 61161120323), and the Natural Science Foundation of Jiangsu Province (BK2011734), the Funding for Out- standing Doctoral Dissertation in NUAA (BCXJ 11-06), the Funding of Jiangsu Innovation Program for Graduate Education (CXLXll_0178), and the Fundamental Re- search Funds for the Central Universities. The authors thank Mr. Yajun Xue for his help in SEM measurements, and Mr. Xinyuan Zhu for his help in TEM measurements.
文摘The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution. Cationic surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) was employed to disperse MWCNTs in the Nation matriX, forming a homogeneous and stable dispersion ofnanotubes. The processing did not involve any strong acid treatment and thus effectively preserved the excellent electronic properties associated with MWCNT. The as-obtained MWCNT/Nafion-IPMC actuator was tested in terms of conductivity, bulk and surface morphology, blocking force and electric current. It was shown that the blocking force and the current of the new IPMC are 2.4 times and 1.67 times higher compared with a pure Nation-based IPMC. Moreover, the MWCNT/IPMC performance is much better than previously reported Nafion-IPMC doped by acid-treated MWCNT. Such significantly improved performance should be attributed to the improvement of electrical property associated with the addition of MWCNTs without acid treatment.