Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), usi...Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.展开更多
A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi...A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.展开更多
针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式...针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式进行动态匹配解决的同步问题.同时,引入了全局路径限制和失真度阈值限制对DTW方法进行改进,解决了传统DTW方法长时间运行造成的故障监测严重滞后的问题,同时克服了其处理过程的复杂性与其离线性导致其实际应用的困难.用多向主元分析(multiway principal component analysis,MPCA)方法将多约束DTW处理过的数据进行建模.将该方法应用到青霉素发酵过程仿真实验中,结果表明:该方法能够快速准确地对不等长批次进行规整,与传统方法相比,故障的误报率、漏报率明显降低.展开更多
Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensio...Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.展开更多
为了实现快速、自动化发现土地覆盖变化这一目标,在分析传统主成分差异法、差异主成分法、多波段主成分法三种不同处理过程的基础上,结合主成分变换原理提出了一种改进的主成分分析法(modified principal component analysis,MPCA)。操...为了实现快速、自动化发现土地覆盖变化这一目标,在分析传统主成分差异法、差异主成分法、多波段主成分法三种不同处理过程的基础上,结合主成分变换原理提出了一种改进的主成分分析法(modified principal component analysis,MPCA)。操作中先将d1时相多光谱影像作主成分分析,得PC1d1,PC2d1,…,PC6d1;d2时相高分辨率全色波段PAN与PC1d1进行直方图匹配后,采用了经反复试验效果较好的3×3模板进行边缘滤波增强;然后取代PC1d1与PC2d1,PC3d1,…,PC6d1进行主成分逆变换,作者在ENVI4.0和IDL6.0工具包支持下实现了这一融合算法。以北京海淀区为例进行的试验研究表明,MPCA法不仅能够快速发现变化信息,而且增强了影像纹理,弥补了传统主成分分析法的缺陷。此外,变化信息提取精度较高,其Kappa系数比传统主成分差异法、差异主成分法、多波段主成分法依次提高了0.063,0.118,0.029,是一种比较实用的变化信息发现方法,值得推广应用。展开更多
以掺假山茶油样为气相离子迁移谱(gas chromatography-ion mobility spectrometry,GC-IMS)检测对象,利用多维主成分分析(multi-way principal component analysis,MPCA)法和偏最小二乘(partial least squares,PLS)回归分析处理二维谱图...以掺假山茶油样为气相离子迁移谱(gas chromatography-ion mobility spectrometry,GC-IMS)检测对象,利用多维主成分分析(multi-way principal component analysis,MPCA)法和偏最小二乘(partial least squares,PLS)回归分析处理二维谱图数据,探索并建立一种山茶油纯度检测方法。对配制的不同比例3种食用植物油的掺假油样进行GC-IMS检测,采用MPCA压缩并提取矩阵中的得分矩阵进行主成分分析,将提取的得分矩阵进行PLS分析,建立掺假量的定量预测模型。结果表明,MPCA处理后的主成分图可以明显区分山茶油样和掺入不同种类食用油的掺假山茶油样,且不同掺入比例组有其明显的归属区域;采用PLS对MPCA的得分矩阵进行回归分析,可实现对山茶油掺假比例的准确定量测定。该方法具有快速、准确、无损的特点,可应用推广到其他联用仪器的数据分析处理中,在食用油品质控制与评价方法中具有很大的应用前景。展开更多
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
基金Supported by the National High-tech Program of China (No. 2001 AA413110).
文摘Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.
文摘A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.
文摘针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式进行动态匹配解决的同步问题.同时,引入了全局路径限制和失真度阈值限制对DTW方法进行改进,解决了传统DTW方法长时间运行造成的故障监测严重滞后的问题,同时克服了其处理过程的复杂性与其离线性导致其实际应用的困难.用多向主元分析(multiway principal component analysis,MPCA)方法将多约束DTW处理过的数据进行建模.将该方法应用到青霉素发酵过程仿真实验中,结果表明:该方法能够快速准确地对不等长批次进行规整,与传统方法相比,故障的误报率、漏报率明显降低.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA11A223)
文摘Multi-way principal component analysis(MPCA)has received considerable attention and been widely used in process monitoring.A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces.However,low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model.This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information.The MPCA model and the knowledge base are built based on the new subspace.Then,fault detection and isolation with the squared prediction error(SPE)statistic and the Hotelling(T2)statistic are also realized in process monitoring.When a fault occurs,fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables.For fault isolation of subspace based on the T2 statistic,the relationship between the statistic indicator and state variables is constructed,and the constraint conditions are presented to check the validity of fault isolation.Then,to improve the robustness of fault isolation to unexpected disturbances,the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation.Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system(ASCS)to prove the correctness and effectiveness of the algorithm.The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model,and sets the relationship between the state variables and fault detection indicators for fault isolation.
文摘为了实现快速、自动化发现土地覆盖变化这一目标,在分析传统主成分差异法、差异主成分法、多波段主成分法三种不同处理过程的基础上,结合主成分变换原理提出了一种改进的主成分分析法(modified principal component analysis,MPCA)。操作中先将d1时相多光谱影像作主成分分析,得PC1d1,PC2d1,…,PC6d1;d2时相高分辨率全色波段PAN与PC1d1进行直方图匹配后,采用了经反复试验效果较好的3×3模板进行边缘滤波增强;然后取代PC1d1与PC2d1,PC3d1,…,PC6d1进行主成分逆变换,作者在ENVI4.0和IDL6.0工具包支持下实现了这一融合算法。以北京海淀区为例进行的试验研究表明,MPCA法不仅能够快速发现变化信息,而且增强了影像纹理,弥补了传统主成分分析法的缺陷。此外,变化信息提取精度较高,其Kappa系数比传统主成分差异法、差异主成分法、多波段主成分法依次提高了0.063,0.118,0.029,是一种比较实用的变化信息发现方法,值得推广应用。
文摘以掺假山茶油样为气相离子迁移谱(gas chromatography-ion mobility spectrometry,GC-IMS)检测对象,利用多维主成分分析(multi-way principal component analysis,MPCA)法和偏最小二乘(partial least squares,PLS)回归分析处理二维谱图数据,探索并建立一种山茶油纯度检测方法。对配制的不同比例3种食用植物油的掺假油样进行GC-IMS检测,采用MPCA压缩并提取矩阵中的得分矩阵进行主成分分析,将提取的得分矩阵进行PLS分析,建立掺假量的定量预测模型。结果表明,MPCA处理后的主成分图可以明显区分山茶油样和掺入不同种类食用油的掺假山茶油样,且不同掺入比例组有其明显的归属区域;采用PLS对MPCA的得分矩阵进行回归分析,可实现对山茶油掺假比例的准确定量测定。该方法具有快速、准确、无损的特点,可应用推广到其他联用仪器的数据分析处理中,在食用油品质控制与评价方法中具有很大的应用前景。
文摘2012年4~8月,在太行山猕猴国家级自然保护区济源管理局天坛山管护区(北纬35°05'~35°15',东经112°12'~112°22'),对太行山猕猴王屋1群(WW-1)内的3个母系单元(matrilineal unit)中大于(等于)3岁龄的26只个体进行面部拍照,获取其面部特写照片,进而利用分块主成分分析(modular principal component analysis,MPCA)法,对个体进行面部识别分析,旨在探讨个体间面部相似度与亲缘关系的相关性。结果表明:(1)太行山猕猴个体间的面部相似度与亲缘类型有关,母亲与大于3岁龄子代间的面部相似度为0.93±0.00,显著高于单元内(0.89±0.00)和单元间(0.84±0.01)的面部相似度;(2)太行山猕猴个体的面部特征随年龄增长而变化,4岁(含4岁)龄以上个体与母亲间的面部相似度较高(0.88~0.95),依此值可准确地识别母子关系。本研究采用量化方法对非人灵长类个体间面部相似度进行分析,发现太行山猕猴个体间的面部相似度与亲缘关系密切相关;研究结果可为非人灵长类的个体识别提供较为客观的手段和方法。