This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other...This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.展开更多
A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple l...A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.展开更多
The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas a...The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively...This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.展开更多
The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy...The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.展开更多
Several new concepts of enhanced pullback attractors for nonautonomous dynamical systems are introduced here by uniformly enhancing the compactness and attraction of the usual pullback attractors over an infinite forw...Several new concepts of enhanced pullback attractors for nonautonomous dynamical systems are introduced here by uniformly enhancing the compactness and attraction of the usual pullback attractors over an infinite forward time-interval under strong and weak topologies.Then we provide some theoretical results for the existence,regularity and asymptotic stability of these enhanced pullback attractors under general theoretical frameworks which can be applied to a large class of PDEs.The existence of these enhanced attractors is harder to obtain than the backward case[33],since it is difficult to uniformly control the long-time pullback behavior of the systems over the forward time-interval.As applications of our theoretical results,we consider the famous 3D primitive equations modelling the large-scale ocean and atmosphere dynamics,and prove the existence,regularity and asymptotic stability of the enhanced pullback attractors in V×V and H^(2)×H^(2) for the time-dependent forces which satisfy some weak conditions.展开更多
A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical po...A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.展开更多
Recently, we received a letter from Prof. G. L. Oppo, which indicated that he had doubts about the transformation of the system in the article Chin. Phys. B 31 060503 (2022) and gave other considerations. After inspec...Recently, we received a letter from Prof. G. L. Oppo, which indicated that he had doubts about the transformation of the system in the article Chin. Phys. B 31 060503 (2022) and gave other considerations. After inspection, we found that there was a clerical error in the article. Based on this, we have made corrections and supplements to the original article.展开更多
We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability ...We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.展开更多
This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surface...This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.展开更多
This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The param...This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The parameter switching algorithm is used to numerically study the dynamic behaviors of the system.Moreover,it is investigated that for some parameters the system with a stable equilibrium point can generate strange hidden attractors.A self-excited attractor with the change of its parameters is also recognized.In addition,numerical simulations are carried out to analyze the dynamic behaviors of the proposed system by using the Lyapunov exponent spectra,Lyapunov dimensions,bifurcation diagrams,phase space orbits,and basins of attraction.Consequently,the findings in this work show that the basins of hidden attractors are tiny for which the standard computational procedure for localization is unavailable.These simulation results are conducive to better understanding of hidden chaotic attractors in higher-dimensional dynamical systems,and are also of great significance in revealing chaotic oscillations such as uncontrolled speed adjustment in the operation of hydropower station due to small changes of initial values.展开更多
In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial condition...In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008)。
文摘This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51177117 and 51307130)
文摘A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.
文摘The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403143)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313739)+1 种基金the Science and Technology Foundation Program of Guangzhou City,China(Grant No.201510010124)the Excellent Doctorial Dissertation Foundation of Guangdong Province,China(Grant No.XM080054)
文摘This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61073187)
文摘The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.
基金supported by China Postdoctoral Science Foundation (2020TQ0053 and 2020M680456)the research funds of Qianshixinmiao[2022]B16,Qianjiaoji[2022]124 and Qiankehepingtairencai-YSZ[2022]022+1 种基金supported by the NSFC (11731014 and 11571254)supported by the NSFC (11971067,11631008,11771183)。
文摘Several new concepts of enhanced pullback attractors for nonautonomous dynamical systems are introduced here by uniformly enhancing the compactness and attraction of the usual pullback attractors over an infinite forward time-interval under strong and weak topologies.Then we provide some theoretical results for the existence,regularity and asymptotic stability of these enhanced pullback attractors under general theoretical frameworks which can be applied to a large class of PDEs.The existence of these enhanced attractors is harder to obtain than the backward case[33],since it is difficult to uniformly control the long-time pullback behavior of the systems over the forward time-interval.As applications of our theoretical results,we consider the famous 3D primitive equations modelling the large-scale ocean and atmosphere dynamics,and prove the existence,regularity and asymptotic stability of the enhanced pullback attractors in V×V and H^(2)×H^(2) for the time-dependent forces which satisfy some weak conditions.
文摘A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.
文摘Recently, we received a letter from Prof. G. L. Oppo, which indicated that he had doubts about the transformation of the system in the article Chin. Phys. B 31 060503 (2022) and gave other considerations. After inspection, we found that there was a clerical error in the article. Based on this, we have made corrections and supplements to the original article.
文摘We study the space of stability conditions on K3 surfaces from the perspective of mirror symmetry. This is done in the attractor backgrounds(moduli). We find certain highly non-generic behaviors of marginal stability walls(a key notion in the study of wall crossings)in the space of stability conditions. These correspond via mirror symmetry to some nongeneric behaviors of special Lagrangians in an attractor background. The main results can be understood as a mirror correspondence in a synthesis of the homological mirror conjecture and SYZ mirror conjecture.
文摘This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.
基金the Fundamental Research Funds for the Northwest A&F University(Grant No./Z1090220172)the Scientific Research Foundation of the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JLP-24)+1 种基金the Shaanxi Province Innovation Talent Promotion PlanScience and Technology Innovation Team,China(Grant No.2020TD-025)the Water Conservancy Science and Technology Program of Shaanxi Province,China(Grant No.2018slkj-9)。
文摘This work studies the stability and hidden dynamics of the nonlinear hydro-turbine governing system with an output limiting link,and propose a new six-dimensional system,which exhibits some hidden attractors.The parameter switching algorithm is used to numerically study the dynamic behaviors of the system.Moreover,it is investigated that for some parameters the system with a stable equilibrium point can generate strange hidden attractors.A self-excited attractor with the change of its parameters is also recognized.In addition,numerical simulations are carried out to analyze the dynamic behaviors of the proposed system by using the Lyapunov exponent spectra,Lyapunov dimensions,bifurcation diagrams,phase space orbits,and basins of attraction.Consequently,the findings in this work show that the basins of hidden attractors are tiny for which the standard computational procedure for localization is unavailable.These simulation results are conducive to better understanding of hidden chaotic attractors in higher-dimensional dynamical systems,and are also of great significance in revealing chaotic oscillations such as uncontrolled speed adjustment in the operation of hydropower station due to small changes of initial values.
文摘In this paper, we discuss the existence and uniqueness of global solutions, the existence of the family of global attractors and its dimension estimation for generalized Beam-Kirchhoff equation under initial conditions and boundary conditions, using the previous research results for reference. Firstly, the existence of bounded absorption set is proved by using a prior estimation, then the existence and uniqueness of the global solution of the problem is proved by using the classical Galerkin’s method. Finally, Housdorff dimension and fractal dimension of the family of global attractors are estimated by linear variational method and generalized Sobolev-Lieb-Thirring inequality.