A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-mes...A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data.展开更多
文摘A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data.