In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith...In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.展开更多
Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system opera...Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system operating in multiple frequency bands: the Multiband Scheduler (MBS). The MBS ensures that the operation in multiple bands is transparent to higher network layers. Special attention is paid to achieving low delay and latency when operating the system in the multiband mode. In particular, we propose additions to the ARQ procedures in order to achieve this. Deployment details and assessment results are presented for two multiband deployment scenarios. The first scenario is operation in a spectrum sharing context where multiple bands are used: one dedicated band for basic service and one shared extension band for extended services. In the second scenario we consider multiband operation in a relay environment, where the two bands have different propagation properties and relays provide extra coverage and capacity in the whole cell.展开更多
基金Projects(61362018,61861019)supported by the National Natural Science Foundation of ChinaProject(1402041B)supported by the Jiangsu Province Postdoctoral Scientific Research Project,China+1 种基金Project(16A174)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject([2016]283)supported by the Research Study and Innovative Experiment Project of College Students,China
文摘In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.
文摘Operation in multiple frequency bands simultaneously is an important enabler for future wireless communication systems. This article presents a new concept for scheduling transmissions in a wireless radio system operating in multiple frequency bands: the Multiband Scheduler (MBS). The MBS ensures that the operation in multiple bands is transparent to higher network layers. Special attention is paid to achieving low delay and latency when operating the system in the multiband mode. In particular, we propose additions to the ARQ procedures in order to achieve this. Deployment details and assessment results are presented for two multiband deployment scenarios. The first scenario is operation in a spectrum sharing context where multiple bands are used: one dedicated band for basic service and one shared extension band for extended services. In the second scenario we consider multiband operation in a relay environment, where the two bands have different propagation properties and relays provide extra coverage and capacity in the whole cell.
文摘为了研究对转桨和单桨的目标特性差异,在大型空泡水筒中针对单桨和对转桨的非空泡和空泡工况进行了噪声测量试验,采集了单桨和对转桨在空化条件和非空化条件下的噪声信号。首先针对空泡水筒自身特性进行了分析研究,发现空泡水筒在1.8 kHz和3.8 kHz附近易产生混响干扰。其次,借助数字信号处理技术对测量的声信号进行谱分析,对比研究了单桨和对转桨在空化条件和非空化条件下噪声信号在频域上的差异和规律,并采用频闪仪和高速摄像机对桨叶空泡进行了观察。试验表明,在非空化条件下,相同工况时对转桨噪声级比单桨高6 d B以上,对转桨倍频程衰减值要小于单桨,对转桨和单桨的三分之一倍频程谱在1.8 kHz和3.8 kHz附近会出现峰值,单桨8 kHz附近峰值是由唱音引起;在空化条件下,相同工况时对转桨和单桨三分之一倍频程谱变化趋势基本一致,对转桨噪声级比单桨高3~20 d B。在空化和非空化条件下,对转桨的调制谱特征比单桨复杂,对转桨的调制频段要远大于单桨,对转桨前后桨一阶叶频组合的调制作用最强,而单桨一阶叶频调制作用最强。