期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints 被引量:12
1
作者 Fang-Fang Zhuang Qi Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期437-446,共10页
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are tre... An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization. 展开更多
关键词 multibody systems Lagrange multipliers Driving constraints Coulomb's friction Horizontal linearcomplementarity problem (HLCP)
下载PDF
An exact nonlinear hybrid-coordinate formulation for flexible multibody systems 被引量:10
2
作者 Jinyang Liu Jiazhen Hong LinCui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期699-706,共8页
The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms, but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deforma... The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms, but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deformation terms. In this paper, a new hybrid-coordinate formulation is proposed, which is suitable for flexible multibody systems with large deformation. On the basis of exact strain- displacement relation, equations of motion for flexible multi-body system are derived by using virtual work principle. A matrix separation method is put forward to improve the efficiency of the calculation. Agreement of the present results with those obtained by absolute nodal coordinate formulation (ANCF) verifies the correctness of the proposed formulation. Furthermore, the present results are compared with those obtained by use of the linear model and the low-order approximate nonlinear model to show the suitability of the proposed models. 展开更多
关键词 Nonlinear hybrid-coordinate formulation Flexible multibody systems Large deformation
下载PDF
Sensitivity Analysis Approach to Multibody Systems Described by Natural Coordinates 被引量:3
3
作者 LI Xiufeng WANG Yabin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期402-410,共9页
The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody sys... The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation, A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-ct integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems. 展开更多
关键词 sensitivity analysis direct differentiation method natural coordinates multibody systems
下载PDF
DYNAMICS OF FLEXIBLE MULTIBODY SYSTEMS WITH TREE TOPOLOGIES
4
作者 洪嘉振 潘振宽 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第3期271-278,共8页
The dynamic equations of flexible multibody systems with tree topological configuration are de- rived by using the Jourdain's principle.The independent joint coordinates are introduced to describe the large displa... The dynamic equations of flexible multibody systems with tree topological configuration are de- rived by using the Jourdain's principle.The independent joint coordinates are introduced to describe the large displacements of the bodies,and the modal coordinates are used to describe small deformations of flexible bodies based on the consistent mass finite element method and normal vibration mode analysis.The mini- mum differential equations are developed,which are compatible with the equations of multi-rigid body sys- tems or structural dynamics.The stiff problem in the numerical integration is thus alleviated effectively.The method used in this paper can be extended to deal with systems with other topological configurations. Finally,the validity and feasibility of the presented mathematical model are demonstrated by a numerical ex- ample of a manipulator with two elastic links. 展开更多
关键词 multibody systems flexible bodies the finite element method the modal analysis method
下载PDF
Symbolic generation of the kinematics of multibody systems in EasyDyn: From MuPAD to Xcas/Giac
5
作者 Olivier Verlinden Lassaad Ben Fkih Georges Kouroussis 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期89-94,共6页
In the EasyDyn multibody open source project, computer algebra has been used from the beginning to generate the expressions of velocities and accelerations of the bodies, by symbolic differentiation of their position.... In the EasyDyn multibody open source project, computer algebra has been used from the beginning to generate the expressions of velocities and accelerations of the bodies, by symbolic differentiation of their position. Originally, the MuPAD computer algebra system had been retained because it was freely available for non commercial purposes and showed very good technical features.Unfortunately, MuPAD is nowadays only available through commercial channels and needs to be replaced to keep EasyDyn publicly available. This paper presents why Xcas/Giac is finally selected,among other long-term promising projects like Axiom, Maxima, Sage or Yacas. Among the choice criteria, the accessibility, the portability, the ease of use, the automatic export to C language, and the similarity with the -MuPAD language are all considered. The performances of the MuPAD and Xcas/Giac implementations are also compared on some examples.C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.13013012] 展开更多
关键词 symbolic multibody systems KINEMATICS computer algebra system open source
下载PDF
Novel sensitivity analysis method and dynamics optimization for multiple launch rocket systems 被引量:1
6
作者 Tu Tianxiong Wang Guoping +1 位作者 Rui Xiaoting Miao Yunfei 《Journal of Southeast University(English Edition)》 EI CAS 2022年第1期15-19,共5页
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R... This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively. 展开更多
关键词 Riccati transfer matrix method for multibody systems multiple launch rocket system launch dynamics sensitivity analysis optimization design
下载PDF
AN AUTOMATIC CONSTRAINT VIOLATION STABI- LIZATION METHOD FOR DIFFERENTIAL/ ALGEBRAIC EQUATIONS OF MOTION IN MULTIBODY SYSTEM DYNAMICS 被引量:1
7
作者 赵维加 潘振宽 王艺兵 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第1期105-110,共6页
A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional con... A new automatic constraint violation stabilization method for numerical integration of Euler_Lagrange equations of motion in dynamics of multibody systems is presented. The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically. The direct integration method, the traditional constraint violation stabilization method and the new method presented in this paper are compared finally. 展开更多
关键词 dynamics of multibody systems Euler_Lagrange equations constraint violation stabilization
下载PDF
A NEW ALGORITHM FOR SOLVING DIFFERENTIAL/ALGEBRAIC EQUATIONS OF MULTIBODY SYSTEM DYNAMICS
8
作者 王艺兵 赵维加 潘振宽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第9期905-912,共8页
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc... The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally. 展开更多
关键词 multibody systems differential/algebraic equations numerical analysis
下载PDF
Recursive dynamics simulator(ReDySim):A multibody dynamics solver
9
作者 Suril V.Shah Paramanand V.Nandihal Subir K.Saha 《Theoretical & Applied Mechanics Letters》 2012年第6期71-76,共6页
Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis... Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly. 展开更多
关键词 ReDySim multibody systems dynamic modeling recursive dynamics DeNOC
下载PDF
Dynamic modeling of ultra-precision fly cutting machine tool and the effect of ambient vibration on its tool tip response 被引量:1
10
作者 Jianguo Ding Yu Chang +4 位作者 Peng Chen Hui Zhuang Yuanyuan Ding Hanjing Lu Yiheng Chen 《International Journal of Extreme Manufacturing》 2020年第2期120-136,共17页
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ... The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation. 展开更多
关键词 ultra-precision fly cutting machine tool transfer matrix method for multibody systems dynamic response of tool tip power spectrum density estimation method ambient vibration
下载PDF
Hybrid multibody system method for the dynamic analysis of an ultra‐precision fly‐cutting machine tool 被引量:3
11
作者 Hanjing Lu Xiaoting Rui +4 位作者 Ziyao Ma Yuanyuan Ding Yiheng Chen Yu Chang Xuping Zhang 《International Journal of Mechanical System Dynamics》 2022年第3期290-307,共18页
The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting ma... The dynamics of an ultra‐precision machine tool determines the precision of the machined surface.This study aims to propose an effective method to model and analyze the dynamics of an ultra‐precision fly‐cutting machine tool.First,the dynamic model of the machine tool considering the deformations of the cutter head and the lathe head is developed.Then,the mechanical elements are classified into M subsystems and F subsystems according to their properties and connections.The M‐subsystem equations are formulated using the transfer matrix method for multibody systems(MSTMM),and the F‐subsystem equations are analyzed using the finite element method and the Craig-Bampton reduction method.Furthermore,all the subsystems are assembled by combining the restriction equations at connection points among the subsystems to obtain the overall transfer equation of the machine tool system.Finally,the vibration characteristics of the machine tool are evaluated numerically and are validated experimentally.The proposed modeling and analysis method preserves the advantages of the MSTMM,such as high computational efficiency,low computational load,systematic reduction of the overall transfer equation,and generalization of its computational capability to general flexible‐body elements.In addition,this study provides theoretical insights and guidance for the design of ultra‐precision machine tools. 展开更多
关键词 transfer matrix method for multibody systems finite element method Craig-Bampton reduction method ultra‐precision fly‐cutting machine tool
原文传递
Deployment dynamics and topology optimization of a spinning inflatable structure 被引量:1
12
作者 Jialiang Sun Dongping Jin Haiyan Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第10期1-13,共13页
Inflatable space structures may undergo the vibration of a long duration because of their features of dynamic deployment,high flexibility,and low-frequency modes.In this paper,a topology optimization methodology is pr... Inflatable space structures may undergo the vibration of a long duration because of their features of dynamic deployment,high flexibility,and low-frequency modes.In this paper,a topology optimization methodology is proposed to reduce the vibration of a spinning inflatable structure.As the first step,a variable-length shell element is developed in the framework of arbitrary Lagrange-Euler(ALE)and absolute nodal coordinate formulation(ANCF)to accurately model the deployment dynamics of the inflatable structure.With the help of two additional material coordinates,the shell element of ALE-ANCF has the ability to describe the large deformation,large overall motion,and variable length of an inflatable structure.The nonlinear elastic forces and additional inertial forces induced by the variable length are analytically derived.In the second step,a topology optimization procedure is presented for the dynamic response of an inflatable structure through the integration of the equivalent static loads(ESL)method and the density method.The ESL sets of the variable-length inflatable structure are defined to simplify the dynamic topology optimization into a static one,while the density-based topology optimization method is used to describe the topology of the inflatable structure made of two materials and solve the static optimization problem.In order to obtain more robust optimization results,sensitivity analysis,density filter,and projection techniques are also utilized.Afterwards,a benchmark example is presented to validate the ALE-ANCF modeling scheme.The deployment dynamics and corresponding topology optimization of a spinning inflatable structure are studied to show the effectiveness of the proposed topology optimization methodology. 展开更多
关键词 Deployment dynamics Topology optimization Vibration reduction Inflatable structures Flexible multibody systems
原文传递
Bio-inspired Topological Skeleton for the Analysis of Quadruped Kinematic Gait 被引量:1
13
作者 Benjamin Boudon Jean-Marc Linares +2 位作者 Anick Abourachid Arthur Vauquelin Emmanuel Mermoz 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第5期839-850,共12页
In bio-inspired design activities, nature is a basis of knowledge. Over the last twenty years, many solutions to measure and analyze human or animal gaits have been developed (VICON system, X-ray radiography...). Al... In bio-inspired design activities, nature is a basis of knowledge. Over the last twenty years, many solutions to measure and analyze human or animal gaits have been developed (VICON system, X-ray radiography...). Although, these methods are becoming more and more accurate, they are quite expensive, long to set up and not easily portable. In this paper, a method called the bio-inspired topological skeleton is proposed in order to complement the classic videography process and to enable animal gait analysis. A new predictive kinematic model with closed-loops of an unguligrade quadruped is suggested. This kinematic model includes three segments per leg and takes into account the scapula movements. The proposed method allows us to improve the accuracy of the kinematic input data measured from a single video including an additional artefact. To show the benefits of this method, joint parameters that are difficult to measure are derived symbolically from the kinematic model and compared with experimental data. 展开更多
关键词 quadruped locomotion motion analysis topological skeleton closed-form solutions multibody systems (MBS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部