To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste...A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC) core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation, the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization. Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective ...Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective and reliable to guarantee successful packet delivery.Based on the data delivery structure,most of the existing multicast routing protocols can be classified into two folders:tree-based and mesh-based.We observe that tree-based ones have high forwarding efficiency and low consumptions of bandwidth,and they may have poor robustness because only one link exists between two nodes.As a treebased multicast routing protocol,MAODV(Multicast Ad hoc On-demand Vector) shows an excellent performance in lightweight ad hoc networks.As the load of network increases,QoS(Quality of Service) is degraded obviously.In this paper,we analyze the impact of network load on MAODV protocol,and propose an optimized protocol MAODV-BB(Multicast Ad hoc On-demand Vector with Backup Branches),which improves robustness of the MAODV protocol by combining advantages of the tree structure and the mesh structure.It not only can update shorter tree branches but also construct a multicast tree with backup branches.Mathematical analysis and simulation results both demonstrate that the MAODV-BB protocol improves the network performance over conventional MAODV in heavy load ad hoc networks.展开更多
A multicast routing algorithm of multiple QoS constraints based on widest-bandwidth (MRQW) which takes available bandwidth as the prime metric, considering the constraints of the surplus energy of the node, delay an...A multicast routing algorithm of multiple QoS constraints based on widest-bandwidth (MRQW) which takes available bandwidth as the prime metric, considering the constraints of the surplus energy of the node, delay and delay jitter, is presented. The process of routing based on MRQW is provided for as well. Correctness proof and the complexity analysis of the MRQW are also given in the paper. Simulation results show that the MRQW has a good performance in creating multicast trees. It not only satisfys multiple QoS constraints but also makes multicast links have larger available bandwidth展开更多
In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant co...In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
Multicasting is a communication service that allows an application to efficiently transmit copies of data packets to a set of destination nodes. The problem of finding a minimum cost multicast tree can be formulated a...Multicasting is a communication service that allows an application to efficiently transmit copies of data packets to a set of destination nodes. The problem of finding a minimum cost multicast tree can be formulated as a minimum Steiner tree problem in networks, which is NP-completeness. MPH (minimum path cost heuristic) algorithm is a famous solution to this problem. In this paper, we present a novel solution TPMPH (two phase minimum path cost heuristic) to improve the MPH by generating the nodes and the edges of multicast tree separately. The cost of multicast tree generated by the proposed algorithm with the same time as MPH is no more than that of MPH in the worst case. Extensive simulation results show that TPMPH can effectively improve the performance on MPH, and performs better in large-scale networks and wireless networks.展开更多
The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of th...The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.展开更多
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorith...A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.展开更多
Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobj...Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.展开更多
In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of ...In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of high resolution,multiview,and large-scale in nature.However,this entity gets easily influenced by heterogeneous behaviour of the user’s wireless link features that might reduce the quality of video stream for few or all clients.The development of SDN allows the emergence of new possibilities for complicated controlling of video conferences.Besides,multicast routing protocol with multiple constraints in terms of Quality of Service(QoS)is a Nondeterministic Polynomial time(NP)hard problem which can be solved only with the help of metaheuristic optimization algorithms.With this motivation,the current research paper presents a new Improved BlackWidow Optimization with Levy Distribution model(IBWO-LD)-based multicast routing protocol for smart cities.The presented IBWO-LD model aims at minimizing the energy consumption and bandwidth utilization while at the same time accomplish improved quality of video streams that the clients receive.Besides,a priority-based scheduling and classifier model is designed to allocate multicast request based on the type of applications and deadline constraints.A detailed experimental analysis was carried out to ensure the outcomes improved under different aspects.The results from comprehensive comparative analysis highlighted the superiority of the proposed IBWO-LD model over other compared methods.展开更多
The electronic system in a comprehensive shipboard has a extremely wide bandwidth. It supports synchronized and asynchronous data transmission, muhimedia correspondence, and videophone conferencing. In order to guaran...The electronic system in a comprehensive shipboard has a extremely wide bandwidth. It supports synchronized and asynchronous data transmission, muhimedia correspondence, and videophone conferencing. In order to guarantee the security and correspondent real time of the communication, choosing a multicast routing protocol based on different applications is a key problem in terms of the complexity of the system. A simulation model was first designed for existing multicast routing protocols in NS-2 and analysis was performed on their corresponding application environments. The experiments proved that PIM-DM based on the shortest-path tree protocol is suitable for communication in the field of comprehensive shipboard. Further work that is necessary is also discussed.展开更多
Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algor...Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algorithms based on Genetic Algorithm (QMRGA). Simulation results demonstrate that the algorithm is capable of discovering a set of QoS-based near optimized, non-dominated multicast routes within a few iterations, even for the networks environment with uncertain parameters.展开更多
A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session proces...A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.展开更多
A distributed QoS (quality of service) -aware source-specific multicast routing protocol—DQSSMR is proposed to increase the successful join ratio and lower the overhead of the control message in QoS required multicas...A distributed QoS (quality of service) -aware source-specific multicast routing protocol—DQSSMR is proposed to increase the successful join ratio and lower the overhead of the control message in QoS required multicast routing. By an improved searching strategy, the cost of message control is reduced and the successful join ratio is increased. The network load is balanced due to the distributed routing operation and the scalability is enhanced further because of the usage of SSM (source- specific multicast) service model in DQSSMR. The analysis results indicate that DQSSMR performs as expected.展开更多
The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the...The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the frequent changes of network topology caused by nodes movement. An Ad hoc QoS Multicasting (AQM) protocol can solve this problem by previously reserving the neighbor nodes for tracking resource availability. By considering QoS restrictions of transport delay, loss ratio, bandwidth requirement, delay jitter, and throughout, and by finding the adaptive routing, the AQM protocol can obviously improve the efficiency of multicastsession. The results of network simulation show that QoS is essentially applicable to Ad hoc networks.展开更多
Differing from the source oriented algorithms, the Core Based Tree (CBT) multicast routing architecture establishes a single shared tree for multiple connections on a multicast group, which results in higher ratio of ...Differing from the source oriented algorithms, the Core Based Tree (CBT) multicast routing architecture establishes a single shared tree for multiple connections on a multicast group, which results in higher ratio of network resources utilization. In alluding to the problem of Core Placement, we propose a simple method (QOCP) to locate an optimal core node, which can minimize the multicast delay and inter destination delay variation simultaneously. The simulation results show that our method is very effective, and outperforms the other algorithms studied in this paper.展开更多
The delay and DVBMT problem is known to be NP-complete. In this paper,an efficient distributed dynamic multicast routing algorithm was proposed to produce routing trees with delay and delay variation constraints. The ...The delay and DVBMT problem is known to be NP-complete. In this paper,an efficient distributed dynamic multicast routing algorithm was proposed to produce routing trees with delay and delay variation constraints. The proposed algorithm is fully distributed,and supports the dynamic reorganizing of the multicast tree in response to changes for the destination. Simulations demonstrate that our algorithm is better in terms of tree delay and routing success ratio as compared with other existing algorithms,and performs excellently in delay variation performance under lower time complexity,which ensures it to support the requirements of real-time multimedia communications more effectively.展开更多
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
基金National Natural Science Foundation of China (60532030, 10577005, 60625102) Innovation Foundation of Aerospace Science and Technology of China
文摘A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC) core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation, the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization. Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
基金This work is supported by the NSFC (National Natural Science Foundation of China) No. 61371068 and No. 61172130, the National 863 program No.2011AA11A102-04-02 and Shenzhen Technology Research and Development Program No. CXZZ20120830100839333.
文摘Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective and reliable to guarantee successful packet delivery.Based on the data delivery structure,most of the existing multicast routing protocols can be classified into two folders:tree-based and mesh-based.We observe that tree-based ones have high forwarding efficiency and low consumptions of bandwidth,and they may have poor robustness because only one link exists between two nodes.As a treebased multicast routing protocol,MAODV(Multicast Ad hoc On-demand Vector) shows an excellent performance in lightweight ad hoc networks.As the load of network increases,QoS(Quality of Service) is degraded obviously.In this paper,we analyze the impact of network load on MAODV protocol,and propose an optimized protocol MAODV-BB(Multicast Ad hoc On-demand Vector with Backup Branches),which improves robustness of the MAODV protocol by combining advantages of the tree structure and the mesh structure.It not only can update shorter tree branches but also construct a multicast tree with backup branches.Mathematical analysis and simulation results both demonstrate that the MAODV-BB protocol improves the network performance over conventional MAODV in heavy load ad hoc networks.
基金This project was supported by the National Natural Science Foundation of China (90304018)and the Natural ScienceFoundation of Hubei Province of China (2004ABA023)
文摘A multicast routing algorithm of multiple QoS constraints based on widest-bandwidth (MRQW) which takes available bandwidth as the prime metric, considering the constraints of the surplus energy of the node, delay and delay jitter, is presented. The process of routing based on MRQW is provided for as well. Correctness proof and the complexity analysis of the MRQW are also given in the paper. Simulation results show that the MRQW has a good performance in creating multicast trees. It not only satisfys multiple QoS constraints but also makes multicast links have larger available bandwidth
文摘In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
文摘Multicasting is a communication service that allows an application to efficiently transmit copies of data packets to a set of destination nodes. The problem of finding a minimum cost multicast tree can be formulated as a minimum Steiner tree problem in networks, which is NP-completeness. MPH (minimum path cost heuristic) algorithm is a famous solution to this problem. In this paper, we present a novel solution TPMPH (two phase minimum path cost heuristic) to improve the MPH by generating the nodes and the edges of multicast tree separately. The cost of multicast tree generated by the proposed algorithm with the same time as MPH is no more than that of MPH in the worst case. Extensive simulation results show that TPMPH can effectively improve the performance on MPH, and performs better in large-scale networks and wireless networks.
文摘The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.
文摘A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.
文摘Quality of service (QoS) multicast routing has continued to be a very important research topic in the Internet. A method of multicast routing is proposed to simultaneously optimize several parameters based on multiobjective genetic algorithm, after the related work is reviewed. The contribution lies on that the selection process of such routing is treated with multiobjective optimization. Different quality criterions in IP network are taken into account for multicast communications. A set of routing trees is generated to approximate the Pareto front of multicast problem. Multiple trees can be selected from the final set of nondominated solutions, and applied to obtain a good overall link cost and balance traffic distribution according to some simulation results.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP.1/282/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R191),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In recent years,Software Defined Networking(SDN)has become an important candidate for communication infrastructure in smart cities.It produces a drastic increase in the need for delivery of video services that are of high resolution,multiview,and large-scale in nature.However,this entity gets easily influenced by heterogeneous behaviour of the user’s wireless link features that might reduce the quality of video stream for few or all clients.The development of SDN allows the emergence of new possibilities for complicated controlling of video conferences.Besides,multicast routing protocol with multiple constraints in terms of Quality of Service(QoS)is a Nondeterministic Polynomial time(NP)hard problem which can be solved only with the help of metaheuristic optimization algorithms.With this motivation,the current research paper presents a new Improved BlackWidow Optimization with Levy Distribution model(IBWO-LD)-based multicast routing protocol for smart cities.The presented IBWO-LD model aims at minimizing the energy consumption and bandwidth utilization while at the same time accomplish improved quality of video streams that the clients receive.Besides,a priority-based scheduling and classifier model is designed to allocate multicast request based on the type of applications and deadline constraints.A detailed experimental analysis was carried out to ensure the outcomes improved under different aspects.The results from comprehensive comparative analysis highlighted the superiority of the proposed IBWO-LD model over other compared methods.
基金Supported by the Performance Simulation and Computation Complexity on Computer Network Foundation (No.F2004060)
文摘The electronic system in a comprehensive shipboard has a extremely wide bandwidth. It supports synchronized and asynchronous data transmission, muhimedia correspondence, and videophone conferencing. In order to guarantee the security and correspondent real time of the communication, choosing a multicast routing protocol based on different applications is a key problem in terms of the complexity of the system. A simulation model was first designed for existing multicast routing protocols in NS-2 and analysis was performed on their corresponding application environments. The experiments proved that PIM-DM based on the shortest-path tree protocol is suitable for communication in the field of comprehensive shipboard. Further work that is necessary is also discussed.
基金Supported by the National Natural Science Foundation of China (No.90304018)Natural Science Foundation of Hubei Province (No.2004ABA014)Teaching Research Project of Higher Educational Institutions of Hubei Province (No.20040231).
文摘Most of the multimedia applications require strict Quality-of-Service (QoS) guarantee during the communication between a single source and multiple destinations. The paper mainly presents a QoS Multicast Routing algorithms based on Genetic Algorithm (QMRGA). Simulation results demonstrate that the algorithm is capable of discovering a set of QoS-based near optimized, non-dominated multicast routes within a few iterations, even for the networks environment with uncertain parameters.
文摘A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.
文摘A distributed QoS (quality of service) -aware source-specific multicast routing protocol—DQSSMR is proposed to increase the successful join ratio and lower the overhead of the control message in QoS required multicast routing. By an improved searching strategy, the cost of message control is reduced and the successful join ratio is increased. The network load is balanced due to the distributed routing operation and the scalability is enhanced further because of the usage of SSM (source- specific multicast) service model in DQSSMR. The analysis results indicate that DQSSMR performs as expected.
文摘The application environments of wireless Ad hoc networks require that it should support Quality of Service (QoS). However, that is very difficult because of the inherent characteristics of the wireless channel and the frequent changes of network topology caused by nodes movement. An Ad hoc QoS Multicasting (AQM) protocol can solve this problem by previously reserving the neighbor nodes for tracking resource availability. By considering QoS restrictions of transport delay, loss ratio, bandwidth requirement, delay jitter, and throughout, and by finding the adaptive routing, the AQM protocol can obviously improve the efficiency of multicastsession. The results of network simulation show that QoS is essentially applicable to Ad hoc networks.
文摘Differing from the source oriented algorithms, the Core Based Tree (CBT) multicast routing architecture establishes a single shared tree for multiple connections on a multicast group, which results in higher ratio of network resources utilization. In alluding to the problem of Core Placement, we propose a simple method (QOCP) to locate an optimal core node, which can minimize the multicast delay and inter destination delay variation simultaneously. The simulation results show that our method is very effective, and outperforms the other algorithms studied in this paper.
文摘The delay and DVBMT problem is known to be NP-complete. In this paper,an efficient distributed dynamic multicast routing algorithm was proposed to produce routing trees with delay and delay variation constraints. The proposed algorithm is fully distributed,and supports the dynamic reorganizing of the multicast tree in response to changes for the destination. Simulations demonstrate that our algorithm is better in terms of tree delay and routing success ratio as compared with other existing algorithms,and performs excellently in delay variation performance under lower time complexity,which ensures it to support the requirements of real-time multimedia communications more effectively.