To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)pre...To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.展开更多
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco...Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly.展开更多
A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit...A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.展开更多
Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynami...Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynamics theory is used to analyze the pressure data of a contrarotating axial flow fan. The delay time is 18 and the embedded dimension varies from 1 to 25 through phase-space reconstruction. In addition, the correlated dimensions are calculated before and after stalling. The results show that the correlated dimensions drop from 1. 428 before stalling to 1. 198 after stalling, so they are sensitive to the stalling signal of the fan and can be used as a characteristic quantity for the judging of the fan stalling.展开更多
文摘To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.
基金Supported by the Key Program of National Natural Science Foundation of China(Nos.61077071,51075349)Program of National Natural Science Foundation of Hebei Province(Nos.F2011203207,F2010001312)
文摘Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly.
基金The National Natural Science Foundation of China(No.30900356,81071135)the National High Technology Research and Development Program of China(863Program)(No.2008AA02Z410)
文摘A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2005018)the Graduate Research and Innovation Plan of Jiangsu Province(CX07B-061Z)~~
文摘Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynamics theory is used to analyze the pressure data of a contrarotating axial flow fan. The delay time is 18 and the embedded dimension varies from 1 to 25 through phase-space reconstruction. In addition, the correlated dimensions are calculated before and after stalling. The results show that the correlated dimensions drop from 1. 428 before stalling to 1. 198 after stalling, so they are sensitive to the stalling signal of the fan and can be used as a characteristic quantity for the judging of the fan stalling.