[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Met...[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Method] Two primers were designed based on the known Brassica napus chloroplast DNA sequences AF267640 and Z50868 in GenBank. By using PCR method, two Brassica napus L. chloroplast DNA fragments were obtained, which were named RbcL and ACCD. The two Brassica na- pus chloroplast DNA homologous fragments were then cloned into plasmid pMD18-T to obtain recombinant plasmid pHBM715. Tandem expression cassette harboring spectinomycin-resistant gene aadA, mannanase gene man and green fluorescent pro- tein gene gfp was cloned into the plasmid pHBM715, thereby constructing Brassica napus chloroplast multicistron double cross-over expression vector pHBM716, which was transformed into Escherichia coil for expression and identification. [Result] Plate qualitative analysis was conducted for the functional identification of expression cas- sette in the constructed Brassica napus chloroplast multicistron double cross-over ex- pression vector, results showed that the three genes of the same multicistron were all expressed in E. coil [Conclusion] This study successfully constructed Brassica napus chloroplast multicistron double cross-over expression vector, which laid the foundation for the genetic engineering of Brassica napus chloroplast.展开更多
基金Supported by National 863 Project of China (2002AA227011)Natural Science Foundation of Hubei Province (2003ABAI18)Natural Science Foundation of Shandong Province (ZR2010HQ054)~~
文摘[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Method] Two primers were designed based on the known Brassica napus chloroplast DNA sequences AF267640 and Z50868 in GenBank. By using PCR method, two Brassica napus L. chloroplast DNA fragments were obtained, which were named RbcL and ACCD. The two Brassica na- pus chloroplast DNA homologous fragments were then cloned into plasmid pMD18-T to obtain recombinant plasmid pHBM715. Tandem expression cassette harboring spectinomycin-resistant gene aadA, mannanase gene man and green fluorescent pro- tein gene gfp was cloned into the plasmid pHBM715, thereby constructing Brassica napus chloroplast multicistron double cross-over expression vector pHBM716, which was transformed into Escherichia coil for expression and identification. [Result] Plate qualitative analysis was conducted for the functional identification of expression cas- sette in the constructed Brassica napus chloroplast multicistron double cross-over ex- pression vector, results showed that the three genes of the same multicistron were all expressed in E. coil [Conclusion] This study successfully constructed Brassica napus chloroplast multicistron double cross-over expression vector, which laid the foundation for the genetic engineering of Brassica napus chloroplast.
基金Supported by National Natural Science Foundation of China(No.81000782)the Scholarship Award for Excellent Doctoral Students granted by Ministry of Education of China(No.82601003)~~