We describe an implementation of the cluster-in-molecule (CIM) resolution of the identity (RI) approximation second-order Moller-Plesset perturbation theory (CIM-RI-MP2), with the purpose of extending RI-MP2 cal...We describe an implementation of the cluster-in-molecule (CIM) resolution of the identity (RI) approximation second-order Moller-Plesset perturbation theory (CIM-RI-MP2), with the purpose of extending RI-MP2 calculations to very large systems. For typical conformers of several large polypeptides, we calculated their conformational energy differences with the CIM-RI-MP2 and the generalized energy-based fragmentation MP2 (GEBF-MP2) methods, and compared these results with the density functional theory (DFT) results obtained with several popular functionals. Our calculations show that the conformational energy differences obtained with CIM-RI-MP2 and GEBF-MP2 are very close to each other. In comparison with the GEBF-MP2 and CIM-RI-MP2 relative energies, we found that the DFT functionals (CAM-B3LYP-D3, LC-ωPBE-D3, M05-2X, M06-2X and coB97XD) can give quite accurate conformational energy differences for structurally similar conformers, but provide less-accurate results for structurally very different conformers.展开更多
The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculati...The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculations. The ground state of OsO is unexpectedly the closed-shell1Σ+state with a double bond instead of the previously reported3Φ or5Σ+state;after including the spin–orbit coupling effects, the ground state becomes3Π2. With the help of the theoretical spectroscopic constants and transition dipole moments, the emission spectra in the region of 405 nm–875 nm are assigned.Our results will facilitate the future studies of absorption and emission spectra of OsO.展开更多
The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for...The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies of the involved conformers were calculated by CCSD(T)//MP2/6-31G* and CCSD(T)//B3LYP/6-31 G* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition reaction is that a complex intermediate is firstly formed between the two reactants through a barrier-free exothermic reaction of 13.3 kJ/mol, and the complex is then isomefized to a four-membered ring product P2,1 via a transition state TS2.1 with a barrier of 32.0 kJ/mol.展开更多
The mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second-order Moller-Plesset perturbation theory (MP2). By using 6–31G* basis, geometry optimization, ...The mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second-order Moller-Plesset perturbation theory (MP2). By using 6–31G* basis, geometry optimization, vibrational analysis and energetics have been calculated for the involved stationary points on the potential energy surface. The results show that the title reaction has two major competition channels. An energy-rich intermediate (INT) is firstly formed between alkylidene carbene and ethylene through a barrier-free exothermic reaction of 63.62 kJ/mol, and the intermediate then isomerizes to a three-membered ring product (Pl) and a four-membered ring product (P2) via transition state TS1 and TS2, in which energy barriers are 47.00 and 51.02 kl/mol. respectively. PI is the main product.展开更多
基金supported by the National Natural Science Foundation of China(21073086,21333004)the National Basic Research Program of China(2011CB808501)
文摘We describe an implementation of the cluster-in-molecule (CIM) resolution of the identity (RI) approximation second-order Moller-Plesset perturbation theory (CIM-RI-MP2), with the purpose of extending RI-MP2 calculations to very large systems. For typical conformers of several large polypeptides, we calculated their conformational energy differences with the CIM-RI-MP2 and the generalized energy-based fragmentation MP2 (GEBF-MP2) methods, and compared these results with the density functional theory (DFT) results obtained with several popular functionals. Our calculations show that the conformational energy differences obtained with CIM-RI-MP2 and GEBF-MP2 are very close to each other. In comparison with the GEBF-MP2 and CIM-RI-MP2 relative energies, we found that the DFT functionals (CAM-B3LYP-D3, LC-ωPBE-D3, M05-2X, M06-2X and coB97XD) can give quite accurate conformational energy differences for structurally similar conformers, but provide less-accurate results for structurally very different conformers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 22073072)the Double First-Class University Construction Project of Northwest University。
文摘The ground state of osmium monoxide(OsO) has long been controversial. In this paper, the low-lying Λ–S and ? electronic states of OsO have been comprehensively studied by the high-precision multi-reference calculations. The ground state of OsO is unexpectedly the closed-shell1Σ+state with a double bond instead of the previously reported3Φ or5Σ+state;after including the spin–orbit coupling effects, the ground state becomes3Π2. With the help of the theoretical spectroscopic constants and transition dipole moments, the emission spectra in the region of 405 nm–875 nm are assigned.Our results will facilitate the future studies of absorption and emission spectra of OsO.
基金Project supported by the Natural Science Foundation of Shandong Province of China (No. Y2002B07).
文摘The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies of the involved conformers were calculated by CCSD(T)//MP2/6-31G* and CCSD(T)//B3LYP/6-31 G* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition reaction is that a complex intermediate is firstly formed between the two reactants through a barrier-free exothermic reaction of 13.3 kJ/mol, and the complex is then isomefized to a four-membered ring product P2,1 via a transition state TS2.1 with a barrier of 32.0 kJ/mol.
基金the Natural Science Foundation of Shandong Province of China (No. Y2002B07).
文摘The mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second-order Moller-Plesset perturbation theory (MP2). By using 6–31G* basis, geometry optimization, vibrational analysis and energetics have been calculated for the involved stationary points on the potential energy surface. The results show that the title reaction has two major competition channels. An energy-rich intermediate (INT) is firstly formed between alkylidene carbene and ethylene through a barrier-free exothermic reaction of 63.62 kJ/mol, and the intermediate then isomerizes to a three-membered ring product (Pl) and a four-membered ring product (P2) via transition state TS1 and TS2, in which energy barriers are 47.00 and 51.02 kl/mol. respectively. PI is the main product.