National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 ind...National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 indicators from six dimensions for analysis in this study, including income, consumption, education, population urbanization, traffic, and indoor living facilities. We then proposed the polyhedron method to comprehensively measure levels of regional multidimensional development. We also enhanced the polygon and vector sum methods to render them more suitable for studying the status of regional multidimensional development. Finally, we measured levels of regional multidimensional development at county, city, and provincial scales across China and analyzed spatial differences using the three methods above and the weighted sum method applied widely. The results of this study reveal the presence of remarkable regional differences at the county scale across China in terms of single and multidimensional levels of regional development. Analyses show that values of the regional multidimensional development index (RMDI) are high in eastern coastal areas, intermediate in the midlands and in northern border regions, and low in the southwest and in western border regions. Districts characterized by enhanced and the highest levels of this index are distributed in eastern coastal areas, including cities in central and western regions, as well as areas characterized by the development of energy and mineral resources. The regional distribution of reduced and the lowest levels of this index is consistent with concentrations of areas that have always been impoverished. Correlation analyses of the results generated by the four methods at provincial, city, and county scales show that all are equivalent in practical application and can be used to generate satisfactory measures for regional multidimensional development. Additiona~ correlation analyses between RMDI values calculated using the polyhedron method and per capita gross domestic product (GDP) demonstrate that the latter is not a meaningful proxy for the level of regional multidimensional development.展开更多
基金National Natural Science Foundation of China,No.41171449Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZZD-EW-06
文摘National and international research on regional development has matured from the use of single elements and indicators to the application of comprehensive multi-element and multi-indicator measures. We selected 12 indicators from six dimensions for analysis in this study, including income, consumption, education, population urbanization, traffic, and indoor living facilities. We then proposed the polyhedron method to comprehensively measure levels of regional multidimensional development. We also enhanced the polygon and vector sum methods to render them more suitable for studying the status of regional multidimensional development. Finally, we measured levels of regional multidimensional development at county, city, and provincial scales across China and analyzed spatial differences using the three methods above and the weighted sum method applied widely. The results of this study reveal the presence of remarkable regional differences at the county scale across China in terms of single and multidimensional levels of regional development. Analyses show that values of the regional multidimensional development index (RMDI) are high in eastern coastal areas, intermediate in the midlands and in northern border regions, and low in the southwest and in western border regions. Districts characterized by enhanced and the highest levels of this index are distributed in eastern coastal areas, including cities in central and western regions, as well as areas characterized by the development of energy and mineral resources. The regional distribution of reduced and the lowest levels of this index is consistent with concentrations of areas that have always been impoverished. Correlation analyses of the results generated by the four methods at provincial, city, and county scales show that all are equivalent in practical application and can be used to generate satisfactory measures for regional multidimensional development. Additiona~ correlation analyses between RMDI values calculated using the polyhedron method and per capita gross domestic product (GDP) demonstrate that the latter is not a meaningful proxy for the level of regional multidimensional development.