期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Recent Advances in Multifunctional Reticular Framework Nanoparticles:A Paradigm Shift in Materials Science Road to a Structured Future 被引量:1
1
作者 Maryam Chafiq Abdelkarim Chaouiki Young Gun Ko 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期435-502,共68页
Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to v... Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to various chemical and structural modifications.Metal–organic frameworks,covalent organic frameworks,and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties,such as high crystallinity,intrinsic porosity,unique structural regularity,diverse functionality,design flexibility,and outstanding stability.This review provides an overview of the state-of-the-art research on base-stable POFs,emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials.Thereafter,the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements.It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category. 展开更多
关键词 Porous organic framework Reticular chemistry Reticular framework nanoparticle Environmental remediation multifunctional material
下载PDF
Multifunctional phase change film with high recyclability, adjustable thermal responsiveness, and intrinsic self-healing ability for thermal energy storage
2
作者 Bo Yang Xuelai Zhang +2 位作者 Jun Ji Weisan Hua Miaomiao Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期216-227,I0005,共13页
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic... Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability. 展开更多
关键词 Phase change film multifunctional material Energy storage SELF-HEALING RECYCLABILITY
下载PDF
Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells 被引量:2
3
作者 Heng Liu Zhengyu Lu +7 位作者 Weihai Zhang Hongkang Zhou Yu Xia Yueqing Shi Junwei Wang Rui Chen Haiping Xia Hsing-Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期505-519,共15页
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch... For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h. 展开更多
关键词 Perovskite solar cells Organic Inorganic complexes multifunctional interfacial material Buried interface layer
下载PDF
Stabilized multifunctional phase change materials based on carbonized Cu-coated melamine foam/reduced graphene oxide framework for multiple energy conversion and storage
4
作者 Zhicong Hu Yongjin Zou +4 位作者 Cuili Xiang Lixian Sun Fen Xu Menghe Jiang Sensen Yu 《Carbon Energy》 SCIE CAS 2022年第6期1214-1227,共14页
The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leaka... The leakage of organic phase change materials(OPCMs)at temperatures above their melting point severely limits their large-scale application.The introduction of porous supports has been identified as an efficient leakageproofing method.In this study,a novel carbonized Cu-coated melamine foam(MF)/reduced graphene oxide(rGO)framework(MF/rGO/Cu-C)is constructed as a support for fabricating stabilized multifunctional OPCMs.MF serves as the supporting material,while rGO and Cu act as functional reinforcements.As a thermal energy storage material,polyethylene glycol(PEG)is encapsulated into MF/rGO/Cu-C through a vacuum-assisted impregnation method to obtain PEG@MF/rGO/Cu-C composite with excellent comprehensive performance.PEG@MF/rGO/Cu-C exhibits high phase change enthalpies of 148.3 J g^(-1)(melting)and 143.9 J g^(-1)(crystallization),corresponding to a high energy storage capability of 92.7%.Simultaneously,MF/rGO/Cu-C endues the composite with an enhanced thermal conductivity of 0.4621Wm^(-1) K^(-1),which increases by 463%compared to that of PEG@MF.Furthermore,PEG@MF/rGO/Cu-C displays great light-to-thermal and electric-to-thermal conversion capabilities,thermal cycle stability,light-tothermal cycle stability,and shape stability,showing promising application prospects in different aspects. 展开更多
关键词 Cu-coated network melamine foam PEG reduced graphene oxide stabilized multifunctional phase change materials
下载PDF
Synthesis and characterization of multifunctional copolyimide incorporating triarylamine and NLO chromophore in backbone
5
作者 白续铎 张志谦 +2 位作者 陈九江 金丹丹 陈九顺 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期47-51,共5页
Presents the synthesis of Copolyimide containing triarylamine and NLO chromophore in backbone by azo coupling of 4 nitrobenzenediazonium tetrafloroborate to copoly(amic acid) in organic solvent and characterized by IR... Presents the synthesis of Copolyimide containing triarylamine and NLO chromophore in backbone by azo coupling of 4 nitrobenzenediazonium tetrafloroborate to copoly(amic acid) in organic solvent and characterized by IR and UV Vis spectra, which had high glass transition temperatrue and big second order nonlinear optical coefficient  x (2) . 展开更多
关键词 COPOLYIMIDE NLO chromophor non linear optical coefficient x (2) multifunctional materials
下载PDF
Crystal structure and optical performance analysis of a new type of persistent luminescence material with multi-functional application prospects 被引量:1
6
作者 Songsong Ding Pohua Chen +4 位作者 Haijie Guo Peng Feng Yunpeng Zhou Yuhua Wang Junliang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期150-160,I0005,共12页
Persistent luminescence (PersL) materials,as environmentally friendly and energy-saving materials,have broad application prospects in many fields such as lighting,chemistry and even biomedicine.However,studies on the ... Persistent luminescence (PersL) materials,as environmentally friendly and energy-saving materials,have broad application prospects in many fields such as lighting,chemistry and even biomedicine.However,studies on the types,performances and mechanism of PersL materials are still insufficient,which significantly restricts their development and application.Under this consideration,we successfully synthesized a yellow PersL material CaSrGa_(4)O_(8)(CSG).The crystal structure was studied in detail through Rotation Electron Diffraction (RED) and Powder X-ray Diffraction (PXRD).What’s more,by co-doping Mn^(2+) and Yb^(3+),the afterglow brightness of CSG could be increased by nearly 20 times,and the afterglow duration could reach more than 6 h.It is worth mentioning that the samples also have excellent performances in mechanical luminescence (ML),photostimulated luminescence (PSL) and cathodoluminescence (CL),which was also investigated systematically.Finally,an anti-counterfeiting label was designed by the samples to reveal the potential of their application in anti-counterfeiting.The results showed that our research not only provided a new candidate PersL material for multifunctional applications,but also gave good help for studying the physical and chemical properties of CSG. 展开更多
关键词 Persistent luminescence multifunctional materials MECHANOLUMINESCENCE ANTI-COUNTERFEITING CATHODOLUMINESCENCE
下载PDF
Tuning microwave absorption properties of Ti_(3)C_(2)T_(x) MXene-based materials:Component optimization and structure modulation 被引量:3
7
作者 Ming Chang Qingyu Li +2 位作者 Zirui Jia Wanru Zhao Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期150-170,共21页
The current electromagnetic environment brings a growing demand for efficient microwave absorption(MA)materials.Ti_(3)C_(2)T_(x) MXene,one of the 2D transition-metal carbides,is considered to be a promising MA materia... The current electromagnetic environment brings a growing demand for efficient microwave absorption(MA)materials.Ti_(3)C_(2)T_(x) MXene,one of the 2D transition-metal carbides,is considered to be a promising MA material owing to its superior dielectric properties and structural processability.In order to further improve the MA performance and environmental adaptability of Ti_(3)C_(2)T_(x) MXene,Ti_(3)C_(2)T_(x) MXene-based MA materials enhanced by composition and structure design have been extensively studied and the regu-lation ideas for its MA properties can be outlined as component optimization and structure manipulation strategies based on the microwave absorption mechanism.Herein,we briefly introduced the microwave absorption mechanism and focused on the design strategies of Ti_(3)C_(2)T_(x) MXene-based MA materials based on recent advances.In addition,the prospects of Ti_(3)C_(2)T_(x) MXene-based MA materials were also discussed. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene Component optimization Structure manipulation multifunctional materials Microwave absorption
原文传递
Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules 被引量:2
8
作者 Junru Yao Jintang Zhou +5 位作者 Feng Yang Guiyu Peng Yijie Liu Zhengjun Yao Fan Wu Haibo Zeng 《Nano Research》 SCIE EI CSCD 2024年第4期3359-3368,共10页
The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment.Here,we developed asymmetric MXene/aramid nanofibers/po... The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment.Here,we developed asymmetric MXene/aramid nanofibers/polyimides(AMAP)aerogels with different modules using an integrated molding process.Cleverly asymmetric modules(layered MXene/aramid nanofibers section and porous MXene/aramid nanofibers/polyimides section)interactions are beneficial for enhanced performances,resulting in low reflection electromagnetic interference(EMI)shielding(specific shielding effectiveness of 2483(dB·cm^(3))/g and a low R-value of 0.0138),high-efficiency infrared radiation(IR)stealth(ultra-low thermal conductivity of 0.045 W/(m·K)and IR emissivity of 0.32 at 3–5μm and 0.28 at 8–14μm),and excellent thermal management performances of insulated Joule heating.Furthermore,these multifunctional AMAP aerogels are suitable for various application scenarios such as personal and building protection against electromagnetic pollution and cold,as well as military equipment protection against infrared detection and EMI. 展开更多
关键词 multifunctional material electromagnetic interference shielding low reflection infrared radiation stealth thermal insulation Joule heating
原文传递
Manipulating guest-responsive spin transition to achieve switchable fluorescence in a Hofmann-type framework
9
作者 Xue-Ru Wu Shu-Qi Wu +4 位作者 Zhi-Kun Liu Ming-Xing Chen Jun Tao Osamu Sato Hui-Zhong Kou 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3339-3346,共8页
The change of fluorescence emission manipulated by spin state transition attracts considerable attention owing to its potential applications in magneto-optical switching devices.Herein,we report two two-dimensional(2D... The change of fluorescence emission manipulated by spin state transition attracts considerable attention owing to its potential applications in magneto-optical switching devices.Herein,we report two two-dimensional(2D)Hofmann-type spin crossover(SCO)metal-organic frameworks(MOFs)[Fe^(Ⅱ)(PNI)_(2){Ag^(Ⅰ)(CN)_(2)}_(2)]·CHCl_(3)(3Ag·CHCl_(3))and[FeⅡ(PNI)_(2){AuⅠ(CN)_(2)}_(2)]·CHCl_(3)(3Au·CHCl_(3))based on the fluorescent ligand N-(4-pyridylmethyl)-1,8-naphthalimide(PNI).Both complexes exhibit interesting SCO behaviors switched by guest solvent molecules,namely three-step transitions for the solvated complexes and complete onestep hysteretic SCO for the desolvated ones,verified by temperature-dependent magnetic susceptibility measurements,Mossbauer spectra,structural analyses,and differential scanning calorimetry measurements.Correspondingly,temperature-dependent fluorescence spectra exhibit double peaks(monomer and excimer emission)with both emission peaks change consistent with the change in SCO properties during the solvent molecule removal.In this study,we integrated guest-responsive SCO behavior into MOFs to manipulate the multistability of spin state and fluorescence switching,providing a rational strategy for the development of stimuli-responsive multifunctional materials. 展开更多
关键词 spin crossover FLUORESCENCE multifunctional materials metal-organic frameworks Hofmann-type
原文传递
Enhancing lithium-sulfur battery performance with In_(2)O_(3)-In_(2)S_(3)@NSC heterostructures:Synergistic effects of double barrier and catalytic transformation
10
作者 Deqing He Chunyu Zhu +1 位作者 Yutao Huo Zhonghao Rao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期105-114,共10页
The sluggish redox reaction kinetics of lithium polysulfides(LiPSs)are considered the main obstacle to the commercial application of lithium-sulfur(Li-S)batteries.To accelerate the conversion by catalysis and inhibit ... The sluggish redox reaction kinetics of lithium polysulfides(LiPSs)are considered the main obstacle to the commercial application of lithium-sulfur(Li-S)batteries.To accelerate the conversion by catalysis and inhibit the shuttling of soluble LiPSs in Li-S batteries,a solution is proposed in this study.The solution involves fabrication of N,S co-doped carbon coated In_(2)O_(3)/In_(2)S_(3)heterostructure(In_(2)O_(3)-In_(2)S_(3)@NSC)as a multifunctional host material for the cathode.The In_(2)O_(3)-In_(2)S_(3)@NSC composite can reduce the Gibbs free energy for the conversion reactions of LiPSs,which results in superior performance.The synergy between different components in In_(2)O_(3)-In_(2)S_(3)@NSC and the unique 3D structure facilitate ion and electron transport in Li-S batteries.The In_(2)O_(3)-In_(2)S_(3)@NSC/Li 2 S 6 cathode exhibits excellent rate capacity,with a capacity of 599 mAh g−1 at 5.5 C,and good cycle stability,with a capacity of 436 mAh g^(−1)after 1000 cycles at 1 C.Overall,this study proposes a promising solution to improve the energy storage properties of Li-S batteries,which could potentially facilitate the commercialization of Li-S batteries. 展开更多
关键词 Li-S battery multifunctional host material SYNERGY HETEROSTRUCTURES Energy storage properties
原文传递
Recent advances in multimodal sensing integration and decoupling strategies for tactile perception
11
作者 Huijun Kong Weiyan Li +1 位作者 Zhongqian Song Li Niu 《Materials Futures》 2024年第2期85-103,共19页
Human skin perceives external environmental stimulus by the synergies between the subcutaneous tactile corpuscles.Soft electronics with multiple sensing capabilities by mimicking the function of human skin are of sign... Human skin perceives external environmental stimulus by the synergies between the subcutaneous tactile corpuscles.Soft electronics with multiple sensing capabilities by mimicking the function of human skin are of significance in health monitoring and artificial sensation.The last decade has witnessed unprecedented development and convergence between multimodal tactile sensing devices and soft bioelectronics.Despite these advances,traditional flexible electronics achieve multimodal tactile sensing for pressure,strain,temperature,and humidity by integrating monomodal sensing devices together.This strategy results in high energy consumption,limited integration,and complex manufacturing process.Various multimodal sensors and crosstalk-free sensing mechanisms have been proposed to bridge the gap between natural sensory system and artificial perceptual system.In this review,we provide a comprehensive summary of tactile sensing mechanism,integration design principles,signal-decoupling strategies,and current applications for multimodal tactile perception.Finally,we highlight the current challenges and present the future perspectives to promote the development of multimodal tactile perception. 展开更多
关键词 multimodal tactile sensing integration multifunctional materials and mechanisms signal decoupling applications of multimodal sensory system
原文传递
Mechanochemistry enables optical-electrical multifunctional response and tunability in two-dimensional hybrid perovskites 被引量:1
12
作者 Zhi-Xu Zhang Chang-Yuan Su +2 位作者 Ji-Xing Gao Tie Zhang Da-Wei Fu 《Science China Materials》 SCIE EI CSCD 2021年第3期706-716,共11页
Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have attracted phenomenal attention because of their superior optoelectronic performances.The combination of their structural tunability and material stabi... Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have attracted phenomenal attention because of their superior optoelectronic performances.The combination of their structural tunability and material stability offers an unprecedented opportunity to engineer materials with unique functionalities.However,developing a rapid and effective design method for introducing luminescence into dielectric switch and realizing controllable regulation has been an enormous challenge.Thus far,materials with tunable optoelectronic multichannel response have not been successfully implemented.In this study,we successfully developed a facile and effective mechanochemical method for realizing the integration and regulation of luminescence and dielectric switch in 2D perovskites,which is unprecedented for the design of dielectric switching materials.The mild external mechanical stimuli enabled the formation of Mn ion-doped 2D hybrid perovskites(Cyclopropylammonium)2Pb1-xMnxBr4 with excellent dielectric switch and rapidly controllable luminescence of highly efficient blue light,white light,pink light,and orange light.This work will provide a new perspective on the rapid and effective design of multifunctional materials and can inspire the future development of low-cost and high-efficiency electronics. 展开更多
关键词 2D hybrid perovskite tunable optoelectronic response MECHANOCHEMISTRY multifunctional material
原文传递
A novel multifunction material with both electrorheological performance and luminescence property
13
作者 陈明星 商艳丽 +1 位作者 贾云玲 李俊然 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第11期1022-1026,共5页
A multifunctional material with both electrorheological(ER) performance and luminescence property was synthesized by a simple coprecipitation. The tetrabutyl titanate, as well as the Tb(NO3)3·6H2O and sulphos... A multifunctional material with both electrorheological(ER) performance and luminescence property was synthesized by a simple coprecipitation. The tetrabutyl titanate, as well as the Tb(NO3)3·6H2O and sulphosalicylic acid(C7H6O6S·2H2O, SSA) were chosen as starting materials. The composition, ER performance and luminescence property of the material were studied. The results showed that a novel material(TiTbSSA) with both ER performance and luminescence property was obtained. The relative shear stress τr(τr=τE/τ0, τE and τ0 were the shear stresses of the suspension with and without an applied electric field) of the suspension(30 wt.%) of the material in silicone oil reached 32.7 at a shear rate of 12.5 s–1 and an electric field strength of 4 kV/mm(DC electric field). The material containing the rare earth(RE=Tb) complex exhibited fine luminescence performance and higher ER activity. Therefore, it is a novel multifunction material which would have wide application prospect. 展开更多
关键词 multifunctional material electrorheological performance luminescence property rare earth complex
原文传递
Biocomposites:Their multifunctionality
14
作者 Kin-tak Lau Mei-po Ho +1 位作者 Chi-ting Au-Yeung Hoi-yan Cheung 《International Journal of Smart and Nano Materials》 SCIE EI 2010年第1期13-27,共15页
During the last decade,tissue engineering has shown a considerable promise in providing more viable alternatives to surgical procedures for harvested tissues,implants and prostheses.Due to the fast development on nano... During the last decade,tissue engineering has shown a considerable promise in providing more viable alternatives to surgical procedures for harvested tissues,implants and prostheses.Due to the fast development on nano-and biomaterial technologies,it is now possible for doctors to use patients’cells to repair orthopaedic defects such as focal articular cartilage lesions.In order to support the three-dimensional tissue formation,scaffolds made by biocompatible and bioresorbable polymers and composite materials,for providing temporary support of damaged body and cell structures,have been developed recently.Although ceramic and metallic materials have been widely accepted for the development of implants,their non-resorbability and necessity of second surgical operation(like for bone repair),which induce extra pain for the patients,limit their wide applications.The development of different types of biocomposites for biomedical engineering applications is described.These biocomposites include(i)basic biomaterials;(ii)natural fiber-reinforced biocomposites and(iii)nanoparticle-reinforced biocomposites.Their multifunctionality is discussed in terms of the control of mechanical properties,biodegradability and bioresorbability. 展开更多
关键词 multifunctional materials BIOCOMPOSITE
原文传递
Highly Efficient Multifunctional Luminescent Radicals
15
作者 Yihan Zhao Alim Abdurahman +3 位作者 Yimeng Zhang Ping Zheng Ming Zhang Feng Li 《CCS Chemistry》 CAS 2022年第2期722-731,共10页
Stable organic luminescent radicals are a special class of compounds integrating optical,electrical,and magnetic properties.Luminescent radicals not only have potential applications in the field of the organic light-e... Stable organic luminescent radicals are a special class of compounds integrating optical,electrical,and magnetic properties.Luminescent radicals not only have potential applications in the field of the organic light-emitting diodes(OLEDs)but can also be applied in the fields of fluorescence sensing,bioimaging,and so forth.Nevertheless,due to the adverse effects of solvent polarity on the luminescent performance of radicals,no feasible approaches have been found in the literature toward fluorescent sensing.In this work,we report two luminescent radicals,2αPyID-TTM and 2δPyID-TTM,whose emissions show high efficiency and less dependence on solvent polarity.Both radicals show remarkable protonation–deprotonation properties.Besides,2αPyID-TTM exhibits significant fluorescence quenching and colorimetric response toward Fe^(3+)in aqueous solution.This suggests the possibility of a fluorometric/colorimetric dual-channel probe for Fe^(3+).Moreover,an optimized OLED using 2δPyID-TTM as an emissive dopant shows pure red emission and a maximum external quantum efficiency(EQE)of 10.6%.These results show promise for luminescent radicals as fluorescent probes and electroluminescent emitters. 展开更多
关键词 luminescent radical proton response fluorescence probe multifunctional materials organic light-emitting diodes
原文传递
Photoluminescence and electrical properties of Eu^3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation 被引量:6
16
作者 Xing-an JIANG Xiang-ping JIANG +3 位作者 Chao CHEN NaTU Yun-jing CHEN Ban-chao ZHANG 《Frontiers of Materials Science》 SCIE CSCD 2016年第1期31-37,共7页
Na0.5Bi4.5-xEuxTi4O15 (NBT-xEu^3+) ceramics with x= 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT-0.25Eu^3+ ceramics show the strongest red and orange emissi... Na0.5Bi4.5-xEuxTi4O15 (NBT-xEu^3+) ceramics with x= 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT-0.25Eu^3+ ceramics show the strongest red and orange emissions corresponding to the 5D0 → 7F2 (617 nm) and 5D0→ 7F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu^3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu^3+ distinctly increased the Curie temperature (Tc) of NBT-xEu^3+ ceramics from 640℃ to 711℃ as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in hightemperature range originates from the conducting electrons from the ionization of oxygen vacancies. High Tc and low tanδ makes Eu^3+-doped NBT ceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration. 展开更多
关键词 Aurivillius bismuth layered structure PHOTOLUMINESCENCE ELECTRICALPROPERTIES multifunctional materials
原文传递
A stretchable triboelectric generator with coplanar integration design of energy harvesting and strain sensing 被引量:3
17
作者 WU Bin ZHANG ZengXing +5 位作者 XUE XiaoBin HAO CongCong ZHANG WenJun BI RuiYu WANG Qiang XUE ChenYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第1期221-230,共10页
The rapid development of flexible triboelectric nanogenerators(TENGs)has become an alternative to batteries for wearable devices.Stretchable,multifunctional,and low-cost are the primary development directions for thes... The rapid development of flexible triboelectric nanogenerators(TENGs)has become an alternative to batteries for wearable devices.Stretchable,multifunctional,and low-cost are the primary development directions for these wearable devices based on TENG.Herein,a stretchable triboelectric generator with coplanar integration was designed for energy harvesting and force sensing.The industrial conductive silicone and silicone were used to fabricate the TENG with a thickness of less than 0.9 mm.When the elongation was less than 150%,TENG exhibited excellent linear characteristics in the resistance-tensile strain correspondence,and the coefficient of determination was 0.99.This stretchable TENG with a sufficient contact area of 9 cm^(2) could generate a short-circuit current of 2μA when it was in contact with the skin.Lastly,an intelligent tension monitoring wearable device that can effectively measure the tensile force was developed.Such a stretchable,coplanar integration-based,and low-cost wearable device has excellent applicability in wearable electronics. 展开更多
关键词 wearable device STRETCHABLE force monitoring multifunctional materials
原文传递
Graphene-wrapped multiloculated nickel ferrite:A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding 被引量:7
18
作者 Yuchang Wang Lihua Yao +1 位作者 Qi Zheng Mao-Sheng Cao 《Nano Research》 SCIE EI CSCD 2022年第7期6751-6760,共10页
Dedicating to the exploration of efficient electromagnetic(EM)absorption and electromagnetic interference(EMI)shielding materials is the main strategy to solve the EM radiation issues.The development of multifunction ... Dedicating to the exploration of efficient electromagnetic(EM)absorption and electromagnetic interference(EMI)shielding materials is the main strategy to solve the EM radiation issues.The development of multifunction EM attenuation materials that are compatible together EM absorption and EMI shielding properties is deserved our exploration and study.Here,the graphenewrapped multiloculated NiFe_(2)O_(4) composites are reported as multifunction EM absorbing and EMI shielding materials.The conductive networks configurated by the overlapping flexible graphene promote the riched polarization genes,as well as electron transmission paths,and thus optimize the dielectric constant of the composites.Meanwhile,the introduction of magnetic NiFe_(2)O_(4) further establishes the magnetic-dielectric synergy effect.The abundant non-homogeneous interfaces not only generate effective interfacial polarization,also the deliberate multiloculated structure of NiFe_(2)O_(4) strengthens multi-scattering and multi-reflection sites to expand the transmission path of EM waves.As it turns out,the best impedance matching is matched at a lower filled concentration to achieve the strongest reflection loss value of−48.1 dB.Simultaneously,green EMI shielding based on a predominantly EM absorption and dissipation is achieved by an enlargement of the filled concentration,which is helpful to reduce the secondary EM wave reflection pollution to the environment.In addition,the electrocatalytic properties are further examined.The graphene-wrapped multiloculated NiFe_(2)O_(4) shows the well electrocatalytic activity as electrocatalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),which is mainly attributed to the interconnected structures formed by graphene and NiFe_(2)O_(4) connection.The structural advantages of multiloculated NiFe_(2)O_(4) expose more active sites,which plays an important role in optimizing catalytic reactions.This work provides an excellent jumping-off point for the development of multifunction EM absorbing materials,eco-friendliness EMI shielding materials and electrocatalysts. 展开更多
关键词 electromagnetic absorbing green electromagnetic shielding multifunction electromagnetic attenuation material graphenewrapped multiloculated Fe_(2)O_(4) oxygen evolution reaction hydrogen evolution reaction
原文传递
Photoluminescence and electrical properties of Er3+-dopedNa0.5Bi4.5Ti4O15-Bi4Ti3O12 inter-growth ferroelectric ceramics 被引量:3
19
作者 Yalin JIANG Xiangping JIANG +3 位作者 Chao CHEN Yunjing CHEN Xingan JIANG Na TU 《Frontiers of Materials Science》 SCIE CSCD 2017年第1期51-58,共8页
Upconversion (UC) and electrical properties of Na0.5Bi8.5-xErxTi7O27 (NBT-BIT-xEr, 0.00≤x≤0.25) ceramics were studied. Structural analysis revealed that a single inter-growth structured phase exists in all sampl... Upconversion (UC) and electrical properties of Na0.5Bi8.5-xErxTi7O27 (NBT-BIT-xEr, 0.00≤x≤0.25) ceramics were studied. Structural analysis revealed that a single inter-growth structured phase exists in all samples and the Er3+ ion substituting for Bi3+ at the A-site increases the orthorhombic distortion. Under the 980 nm laser excitation, two characteristic green emission bands and one red emission band were situated at 527, 548 and 670 nm, corresponding to the transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively. The optimal photoluminescence (PL) were found in the NBT-BIT-0.20Er sample, and the emission color transforms from green to yellowish green. Temperature dependence of fluorescence intensity ratio (FIR) for NBT-BIT-0.20Er was measured ranging from 290 to 440 K and its maximum sensitivity was calculated to be about 0.0020 K-1 at 290 K. Dielectric measurements indicated that Tc slightly increased simultaneously with the decrease of tanS. Therefore, this ceramic has potential applications for high-temperature multifunctional devices. 展开更多
关键词 inter-growth structure photoluminescence (PL) electrical properties multifunctional materials
原文传递
Three-Dimensional Porous Heterometallic-Organic Frameworks: Synthesis, Luminescent, Magnetic, Adsorption and Hydrogen Storage Properties 被引量:2
20
作者 Yaqun Cao Runwei Wang +2 位作者 Gang Wu Qianrong Fang Shilun Qiu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2016年第2期196-202,共7页
Two three-dimensional (3D) porous heterometal-organic frameworks (HMOFs) with isostructures, [Zn2Cd(OH)(BTC)2(DMF)(H20)z].(H30) (JUC-155A) and [ZnCo2(OH)(BTC)z(DMF)(H2O)2].(H3O) (JUC-155B) ... Two three-dimensional (3D) porous heterometal-organic frameworks (HMOFs) with isostructures, [Zn2Cd(OH)(BTC)2(DMF)(H20)z].(H30) (JUC-155A) and [ZnCo2(OH)(BTC)z(DMF)(H2O)2].(H3O) (JUC-155B) (JUC = Jilin University China, BTC = 1,3,5-benzenetricarboxylate and DMF = N,N-dimethylformamide), have been successfully synthesized by utilizing two kinds of 3d metal ions (Zn(II) and Cd(II) or Zn(II) and Co(II)) under conformable conditions. X-ray crystallography reveals that both HMOFs consist of trinuclear metal-carboxylate secon- dary building units (SBUs), and these SBUs are interlinked by the phenyl groups of BTC ligands to generate 3D open-frameworks with two types of channels of about 6.3 and 10.7 A.. Both HMOFs show the multifunctional prop- erties in photoluminescence and adsorption. JUC-155B also exhibits an antiferromagnetic interaction, owing to the presence of dinuclear cobalt centers. Additionally, the high-pressure hydrogen storage of JUC-155A has been also examined at 77 K. By using mixed metal centers in clustered SBUs, it is a good strategy to construct those isostructures with heterometallic systems, and it is believed that the presence of such HMOFs will further facilitate the exploration ofmultifunctional materials. 展开更多
关键词 metal-organic framework heterometal-organic framework multifunctional materials porous materials
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部