Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentrati...Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.展开更多
New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and w...New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.展开更多
基金the German research council(Deutsche Forschungsgemeinschaft) for their financial support to the project:AG 26/18-1
文摘Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.
文摘New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.