The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-n...The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.展开更多
We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sam...We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.展开更多
The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is ...The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.展开更多
Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical apert...Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.展开更多
基金the National Natural Science Foundation of China(Nos.12005250,U1932167,and U1432244).
文摘The multilayer Laue lens(MLL) is a diffractive focusing optical element which can focus hard X-rays down to the nanometer scale. In this study, a WSi_(2)/Si multilayer structure consisting of 1736 layers, with a 7.2-nm-thick outermost layer and a total thickness of 17 μm, is prepared by DC magnetron sputtering. Regarding the thin film growth rate calibration, we correct the long-term growth rate drift from 2 to 0.6%, as measured by the grazing incidence X-ray reflectivity(GIXRR). A one-dimensional line focusing resolution of 64 nm was achieved,while the diffraction efficiency was 38% of the-1 order of the MLL Shanghai Synchrotron Radiation Facility(SSRF) with the BL15U beamline.
基金Supported by National Natural Science Foundation of China(U1432244,11375131)Major State Basic Research Development Program(2011CB922203)
文摘We designed and fabricated a multilayer Laue lens (MLL) as a hard X-ray focusing device. WSi2/Si multilayers were chosen owing to their excellent optical properties and relatively sharp interface. The multilayer sample was fabricated by using direct current (DC) magnetron sputtering technology and then was sliced and thinned to form an MLL. The thickness of each layer was determined by scanning electron microscopy (SEM) image analysis with marking layers. The focusing property of the MLL was measured at Beamline 15U, Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 92 nm are obtained at photon energy of 14 keV.
基金Supported by National Natural Science Foundation of China (10825521)973 Project (2011CB922203)Natural Science Foundation of Shanghai (09ZR1434300)
文摘The multilayer Laue lens (MLL) is a novel diffraction optics which can realize nanometer focusing of hard X-rays with high efficiency. In this paper, a 7.9 μm-thick MLL with the outmost layer thickness of 15 nm is designed based on dynamical diffraction theory. The MLL is fabricated by first depositing the depth-graded multilayer using direct current (DC) magnetron sputtering technology. Then, the multilayer sample is sliced, and both cross-sections are thinned and polished to a depth of 35–41 μm. The focusing property of the MLL is measured at the Shanghai Synchrotron Facility (SSRF). One-dimensional (1D) focusing resolutions of 205 nm and 221 nm are obtained at E=14 keV and 18 keV, respectively. It demonstrates that the fabricated MLL can focus hard X-rays into nanometer scale.
基金supported by Joachim Herz Stiftungthe Helmholtz Association through program-oriented funds.
文摘Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays.With a new manufacturing technique that we introduced,it is possible to fabricate lenses of sufficiently high numerical aperture(NA)to achieve focal spot sizes below 10 nm.The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA.This poses a challenge to both the accuracy of the deposition process and the control of the materials properties,which often vary with layer thickness.We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses.Using a pair of multilayer Laue lenses(MLLs)fabricated from this system,we achieved a two-dimensional focus of 8.4×6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm.The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications.An error analysis indicates the possibility of achieving 1 nm focusing.