This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
We employ the Dirac cone model to explore the high Chern number(C)phases that are realized in the magnetic-doped topological insulator(TI)multilayer structures by Zhao et al.[Nature 588419(2020)].The Chern number is c...We employ the Dirac cone model to explore the high Chern number(C)phases that are realized in the magnetic-doped topological insulator(TI)multilayer structures by Zhao et al.[Nature 588419(2020)].The Chern number is calculated by capturing the evolution of the phase boundaries with the parameters,then the Chern number phase diagrams of the TI multilayer structures are obtained.The high-C behavior is attributed to the band inversion of the renormalized Dirac cones,along with which the spin polarization at theΓpoint will get increased.Moreover,another two TI multilayer structures as well as the TI superlattice structures are studied.展开更多
Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal o...Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits.However,existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques,which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up.Here in this work,we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier.For the first time,we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions.Uniform electroluminescence is observed over the entire active region,with the emission spectrum shaped by metallic grating plasmons.The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier.The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.展开更多
In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations...In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities(ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation(MTI) is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.展开更多
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11804122 and 11905054)the China Postdoctoral Science Foundation(Grant No.2021M690970)the Fundamental Research Funds for the Central Universities of China.
文摘We employ the Dirac cone model to explore the high Chern number(C)phases that are realized in the magnetic-doped topological insulator(TI)multilayer structures by Zhao et al.[Nature 588419(2020)].The Chern number is calculated by capturing the evolution of the phase boundaries with the parameters,then the Chern number phase diagrams of the TI multilayer structures are obtained.The high-C behavior is attributed to the band inversion of the renormalized Dirac cones,along with which the spin polarization at theΓpoint will get increased.Moreover,another two TI multilayer structures as well as the TI superlattice structures are studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004222 and 91850207)the National Key Research and Development Program of China (Grant Nos. 2017YFA0303504 and 2017YFA0205800)+2 种基金the Fundamental Research Funds for the Central Universities, Chinathe Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000)the Postdoctoral Science Foundation of China (Grant No. 2020M682223)
文摘Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits.However,existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques,which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up.Here in this work,we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier.For the first time,we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions.Uniform electroluminescence is observed over the entire active region,with the emission spectrum shaped by metallic grating plasmons.The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier.The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.
基金supported by China Building Materials Research Institute
文摘In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities(ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation(MTI) is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.