In recent years,machine learning algorithms and in particular deep learning has shown promising results when used in the field of legal domain.The legal field is strongly affected by the problem of information overloa...In recent years,machine learning algorithms and in particular deep learning has shown promising results when used in the field of legal domain.The legal field is strongly affected by the problem of information overload,due to the large amount of legal material stored in textual form.Legal text processing is essential in the legal domain to analyze the texts of the court events to automatically predict smart decisions.With an increasing number of digitally available documents,legal text processing is essential to analyze documents which helps to automate various legal domain tasks.Legal document classification is a valuable tool in legal services for enhancing the quality and efficiency of legal document review.In this paper,we propose Sammon Keyword Mapping-based Quadratic Discriminant Recurrent Multilayer Perceptive Deep Neural Classifier(SKM-QDRMPDNC),a system that applies deep neural methods to the problem of legal document classification.The SKM-QDRMPDNC technique consists of many layers to perform the keyword extraction and classification.First,the set of legal documents are collected from the dataset.Then the keyword extraction is performed using SammonMapping technique based on the distance measure.With the extracted features,Quadratic Discriminant analysis is applied to performthe document classification based on the likelihood ratio test.Finally,the classified legal documents are obtained at the output layer.This process is repeated until minimum error is attained.The experimental assessment is carried out using various performance metrics such as accuracy,precision,recall,F-measure,and computational time based on several legal documents collected from the dataset.The observed results validated that the proposed SKM-QDRMPDNC technique provides improved performance in terms of achieving higher accuracy,precision,recall,and F-measure with minimum computation time when compared to existing methods.展开更多
针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS...针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。展开更多
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v...The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.展开更多
文摘In recent years,machine learning algorithms and in particular deep learning has shown promising results when used in the field of legal domain.The legal field is strongly affected by the problem of information overload,due to the large amount of legal material stored in textual form.Legal text processing is essential in the legal domain to analyze the texts of the court events to automatically predict smart decisions.With an increasing number of digitally available documents,legal text processing is essential to analyze documents which helps to automate various legal domain tasks.Legal document classification is a valuable tool in legal services for enhancing the quality and efficiency of legal document review.In this paper,we propose Sammon Keyword Mapping-based Quadratic Discriminant Recurrent Multilayer Perceptive Deep Neural Classifier(SKM-QDRMPDNC),a system that applies deep neural methods to the problem of legal document classification.The SKM-QDRMPDNC technique consists of many layers to perform the keyword extraction and classification.First,the set of legal documents are collected from the dataset.Then the keyword extraction is performed using SammonMapping technique based on the distance measure.With the extracted features,Quadratic Discriminant analysis is applied to performthe document classification based on the likelihood ratio test.Finally,the classified legal documents are obtained at the output layer.This process is repeated until minimum error is attained.The experimental assessment is carried out using various performance metrics such as accuracy,precision,recall,F-measure,and computational time based on several legal documents collected from the dataset.The observed results validated that the proposed SKM-QDRMPDNC technique provides improved performance in terms of achieving higher accuracy,precision,recall,and F-measure with minimum computation time when compared to existing methods.
文摘针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。
文摘The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.