This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c...The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.展开更多
The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not mu...The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).展开更多
An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters ...An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.展开更多
A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed ...A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a ...Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.展开更多
This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In par...This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.展开更多
Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studi...Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.展开更多
In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is...In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.展开更多
Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it ...Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.展开更多
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak...Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.展开更多
A multilayer perceptron(MLP) artificial neural network(ANN) model has been optimized by the multi-objective ant colony optimization(MOACO) algorithm, which uses three objective functions. A sensitivity analysis to cho...A multilayer perceptron(MLP) artificial neural network(ANN) model has been optimized by the multi-objective ant colony optimization(MOACO) algorithm, which uses three objective functions. A sensitivity analysis to choose MOACO parameter values is carried out by calculating hypervolume metric, and the proposed approach adopts the Vlsekriterijumska Optimizacija I Kompromisno Resenje(VIKOR) decision method to choose final compromised solution on the Pareto front obtained from MOACO. As a result, we used the MLP-MOACO developed model to estimate the value of engine emissions of NOxin a four stroke, spark ignition(SI) gasoline engine and observed acceptable correlation coefficient(R^2) of 0.99978.展开更多
Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards the...Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards these efforts. The forecasting process involves prediction of not only the specific months-in-service (MIS) warranty performance at certain future time, but also at future MIS values. However, 'maturing data' (also called warranty growth) phenomena that causes warranty performance at specific MIS values to change with time, makes such a forecasting task challenging. Although warranty forecasting methods such as log-log plots and dynamic linear models appear in literature, there is a need for applications addressing the well recognized issue of ‘maturing data’. In this paper we use an artificial neural network for the forecasting of warranty performance in presence of ‘maturing data’ phenomena. The network parameters are optimized by minimizing the training and testing errors using response surface methodology. This application shows the effectiveness of neural networks in the forecasting of automobile warranty performance in the presence of the ‘maturing data’ phenomena.展开更多
To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with ad...To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with adaptive centers and widths,which is composed of more than one hidden layer.In the hidden layer of the RBF-activated MLP network(MLPRBF),the outputs of the preceding layer are first linearly transformed and then fed into the univariate Gaussian RBF,which exploits the highly nonlinear property of RBF.Adaptive RBFs might address the issues of saturated outputs,low sensitivity,and vanishing gradients in MLPs activated by other prevailing nonlinear functions.Finally,we apply four MLP networks with the rectified linear unit(ReLU),sigmoid function(sigmoid),hyperbolic tangent function(tanh),and Gaussian RBF as the activation functions to approximate the one-dimensional(1D)sinusoidal function,the analytical solution of viscous Burgers’equation,and the two-dimensional(2D)steady lid-driven cavity flows.Using the same network structure,MLP-RBF generally predicts more accurately and converges faster than the other threeMLPs.MLP-RBF using less hidden layers and/or neurons per layer can yield comparable or even higher approximation accuracy than other MLPs equipped with more layers or neurons.展开更多
Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP)...Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP) neural-network model for SAR image despeckling byusing a time series of SAR images. Unlike other filtering methods thatuse only a single radar intensity image to derive their parameters andfilter that single image, this method can be trained using archivedimages over an area of interest to self-learn the intensitycharacteristics of image patches and then adaptively determine theweights and thresholds by using a neural network for imagedespeckling. Several hidden layers are designed for feedforwardnetwork training, and back-propagation stochastic gradient descent isadopted to reduce the error between the target output and neuralnetwork output. The parameters in the network are automaticallyupdated in the training process. The greatest advantage of MLP is thatonce the despeckling parameters are determined, they can be used toprocess not only new images in the same area but also images incompletely different locations. Tests with images from TerraSAR-X inselected areas indicated that MLP shows satisfactory performance withrespect to noise reduction and edge preservation. The overall imagequality obtained using MLP was markedly higher than that obtainedusing numerous other filters. In comparison with other recentlydeveloped filters, this method yields a slightly higher image quality,and it demonstrates the powerful capabilities of computer learningusing SAR images, which indicate the promising prospect of applyingMLP to SAR image despeckling.展开更多
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
文摘The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.
文摘The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).
文摘An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.
文摘A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
文摘Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.
文摘This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.
基金Otokar Otomotiv ve Savunma Sanayi A.S. for the financial support
文摘Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods(FEM) in this research field.The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort,therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time.This study aims to apply a hybrid method using FEM simulation and artificial neural network(ANN) analysis to approximate ballistic limit thickness for armor steels.To achieve this objective,a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition.In this methodology,the FEM simulations are used to create training cases for Multilayer Perceptron(MLP) three layer networks.In order to validate FE simulation methodology,ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569.Afterwards,the successfully trained ANN(s) is used to predict the ballistic limit thickness of 500 HB high hardness steel armor.Results show that even with limited number of data,FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
文摘In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.
文摘Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.
文摘Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results.
基金supported by the National Council for Science and Technology of Mexico,CONACYT(Grant No.45765)
文摘A multilayer perceptron(MLP) artificial neural network(ANN) model has been optimized by the multi-objective ant colony optimization(MOACO) algorithm, which uses three objective functions. A sensitivity analysis to choose MOACO parameter values is carried out by calculating hypervolume metric, and the proposed approach adopts the Vlsekriterijumska Optimizacija I Kompromisno Resenje(VIKOR) decision method to choose final compromised solution on the Pareto front obtained from MOACO. As a result, we used the MLP-MOACO developed model to estimate the value of engine emissions of NOxin a four stroke, spark ignition(SI) gasoline engine and observed acceptable correlation coefficient(R^2) of 0.99978.
文摘Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards these efforts. The forecasting process involves prediction of not only the specific months-in-service (MIS) warranty performance at certain future time, but also at future MIS values. However, 'maturing data' (also called warranty growth) phenomena that causes warranty performance at specific MIS values to change with time, makes such a forecasting task challenging. Although warranty forecasting methods such as log-log plots and dynamic linear models appear in literature, there is a need for applications addressing the well recognized issue of ‘maturing data’. In this paper we use an artificial neural network for the forecasting of warranty performance in presence of ‘maturing data’ phenomena. The network parameters are optimized by minimizing the training and testing errors using response surface methodology. This application shows the effectiveness of neural networks in the forecasting of automobile warranty performance in the presence of the ‘maturing data’ phenomena.
基金This work was partially supported by the research grant of the National University of Singapore(NUS),Ministry of Education(MOE Tier 1).
文摘To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with adaptive centers and widths,which is composed of more than one hidden layer.In the hidden layer of the RBF-activated MLP network(MLPRBF),the outputs of the preceding layer are first linearly transformed and then fed into the univariate Gaussian RBF,which exploits the highly nonlinear property of RBF.Adaptive RBFs might address the issues of saturated outputs,low sensitivity,and vanishing gradients in MLPs activated by other prevailing nonlinear functions.Finally,we apply four MLP networks with the rectified linear unit(ReLU),sigmoid function(sigmoid),hyperbolic tangent function(tanh),and Gaussian RBF as the activation functions to approximate the one-dimensional(1D)sinusoidal function,the analytical solution of viscous Burgers’equation,and the two-dimensional(2D)steady lid-driven cavity flows.Using the same network structure,MLP-RBF generally predicts more accurately and converges faster than the other threeMLPs.MLP-RBF using less hidden layers and/or neurons per layer can yield comparable or even higher approximation accuracy than other MLPs equipped with more layers or neurons.
文摘Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP) neural-network model for SAR image despeckling byusing a time series of SAR images. Unlike other filtering methods thatuse only a single radar intensity image to derive their parameters andfilter that single image, this method can be trained using archivedimages over an area of interest to self-learn the intensitycharacteristics of image patches and then adaptively determine theweights and thresholds by using a neural network for imagedespeckling. Several hidden layers are designed for feedforwardnetwork training, and back-propagation stochastic gradient descent isadopted to reduce the error between the target output and neuralnetwork output. The parameters in the network are automaticallyupdated in the training process. The greatest advantage of MLP is thatonce the despeckling parameters are determined, they can be used toprocess not only new images in the same area but also images incompletely different locations. Tests with images from TerraSAR-X inselected areas indicated that MLP shows satisfactory performance withrespect to noise reduction and edge preservation. The overall imagequality obtained using MLP was markedly higher than that obtainedusing numerous other filters. In comparison with other recentlydeveloped filters, this method yields a slightly higher image quality,and it demonstrates the powerful capabilities of computer learningusing SAR images, which indicate the promising prospect of applyingMLP to SAR image despeckling.