The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the...The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.展开更多
Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave...Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an...A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.展开更多
Formation damage evaluation is an important component in well test analysis and for- mation evaluation. Formation damage of one-layer reservoir has been studied by decomposing the total skin factor and estimating the ...Formation damage evaluation is an important component in well test analysis and for- mation evaluation. Formation damage of one-layer reservoir has been studied by decomposing the total skin factor and estimating the mud pollution depth. And the well test analyses for multilayered reservoirs were reported, but relation between the total skin factor and individual layer skin factor has not been considered. The relation is devel-oped in this note with well test analysis combining numerical simulation, which aids properly evaluating formation and making stimulating decision.展开更多
In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear pe...In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear.展开更多
The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan...The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.展开更多
Near-field radiative heat transfer(NFRHT) research is an important research project after a major breakthrough in nanotechnology. Based on the multilayer structure, we find that due to the existence of inherent losses...Near-field radiative heat transfer(NFRHT) research is an important research project after a major breakthrough in nanotechnology. Based on the multilayer structure, we find that due to the existence of inherent losses,the decoupling of hyperbolic modes(HMs) after changing the filling ratio leads to suppression of heat flow near the surface mode resonance frequency. It complements the physical landscape of enhancement of near-field radiative heat transfer by HMs and more surface states supported by multiple surfaces. More importantly, considering the difficulty of accurate preparation at the nanoscale, we introduce the disorder factor to describe the magnitude of the random variation of the layer thickness of the multilayer structure and then explore the effect on heat transfer when the layer thickness is slightly different from the exact value expected. We find that the near-field radiative heat flux decreases gradually as the disorder increases because of interlayer energy localization. However, the reduction in heat transfer does not exceed an order of magnitude, although the disorder is already very large. At the same time, the regulation effect of the disorder on NFRHT is close to that of the same degree of filling ratio,which highlights the importance of disordered systems. This work qualitatively describes the effect of disorder on heat transfer and provides instructive data for the fabrication of NFRHT devices.展开更多
Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidat...Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.展开更多
Smart Agriculture,also known as Agricultural 5.0,is expected to be an integral part of our human lives to reduce the cost of agricultural inputs,increasing productivity and improving the quality of the final product.I...Smart Agriculture,also known as Agricultural 5.0,is expected to be an integral part of our human lives to reduce the cost of agricultural inputs,increasing productivity and improving the quality of the final product.Indeed,the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important.To provide more comprehensive protection against potential cyber-attacks,this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture.The proposed Intrusion Detection System IDS,namely GMLPIDS,combines the feedforward neural network Multilayer Perceptron(MLP)and the Gaussian Mixture Model(GMM)that can better protect the Smart Agriculture system.GMLP-IDS is evaluated with the CIC-DDoS2019 dataset,which contains various Distributed Denial-of-Service(DDoS)attacks.The paper first uses the Pearson’s correlation coefficient approach to determine the correlation between the CIC-DDoS2019 dataset characteristics and their corresponding class labels.Then,the CIC-DDoS2019 dataset is divided randomly into two parts,i.e.,training and testing.75%of the data is used for training,and 25%is employed for testing.The performance of the newly proposed IDS has been compared to the traditional MLP model in terms of accuracy rating,loss rating,recall,and F1 score.Comparisons are handled on both binary and multi-class classification problems.The results revealed that the proposed GMLP-IDS system achieved more than 99.99%detection accuracy and a loss of 0.02%compared to traditional MLP.Furthermore,evaluation performance demonstrates that the proposed approach covers a more comprehensive range of security properties for Smart Agriculture and can be a promising solution for detecting unknown DDoS attacks.展开更多
The diagnosis of liver fibrosis(LF)is crucial as it is a deadly and life-threatening disease.Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system,which hel...The diagnosis of liver fibrosis(LF)is crucial as it is a deadly and life-threatening disease.Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system,which helps to take decisions about patients’health as experts can.The historical data of a patient’s health can have vagueness,inaccurate,and can also have missing values.The fuzzy logic theory can deal with these issues in the dataset.In this paper,a multilayer fuzzy expert system is developed to diagnose LF.The model is created by using multiple layers of the fuzzy logic approach.This system aids in classifying the health of patients into different classes.The proposed method has two layers,i.e.,layer 1 and layer 2.The input variables used in layer 1 for diagnosing liver fibrosis are Appetite,Jaundice,Ascites,Age,and Fatigue.Similarly,in layer 2,the input variables are Platelet count,White blood cell count,spleen,SGPT ALT(Serum Glutamic Pyruvic Transaminase Alanine Aminotransferase),SGOT ALT(Serum Glutamicoxalacetic Transaminase Alanine Aminotransferase),Serum bilirubin,and Serum albumin.The output variables for this developed system are no damage,minimal damage,significant damage,severe damage,and cirrhosis.This research work also presents the examination of results based on performance parameters.The proposed system achieves a classification accuracy of 95%.Moreover,other performance parameters such as sensitivity,specificity,and precision are calculated as 97.14%,92%,and 94.44%,respectively.展开更多
Valley Nernst effect is a newly proposed and experimentally confirmed effect,which could be used to design novel thermoelectric devices.We study the valley Nernst effect in(M+N)-layer twisted multilayer graphene syste...Valley Nernst effect is a newly proposed and experimentally confirmed effect,which could be used to design novel thermoelectric devices.We study the valley Nernst effect in(M+N)-layer twisted multilayer graphene systems by a simple low-energy effective model.It is found that the total valley Nernst coefficient(VNC)is three orders of magnitude larger than that in monolayer group-Ⅵdichalcogenides.The total VNC increases with the increase of layer numbers.It is shown that the total VNC exhibits a structure with three peaks as a function of the Fermi energy.We identify that the central peak is always negative stemming from the flat band.Two shoulder peaks are positively induced by the conduction and valence bands,respectively.These predicted features can be tested experimentally.The present work would shed more light on valley caloritronics.展开更多
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ...Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.展开更多
This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are b...This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are based on the traditional CCF system with the single casing and cement sheath,but these results are not adaptive to the CCF system multiple composite system.In this paper,the FEM numerical model of CCF multilayer composite system was constructed.Numerical simulations were calculated and compared with the system which consists of the single casing and cement sheath.Results show that the multilayer composite system possesses better performance.On this basis,the sensitivity analysis of main influence mechanical parameters such as in-situ stress,the elastic of cement sheathes and the elastic of formation are conducted.The cement sheath on the inside,namely cement sheath-1,is sensitive to its elastic modulus;meanwhile,the cement sheath on the outside,namely cement sheath-2,is not so sensitive to the elastic modulus of cement sheath-1.Cement sheath-1 and cement sheath-2 are all sensitive to the elastic modulus of cement sheath-2,and the mises stress of them has opposite trend to the elastic modulus of cement sheath-2.The proper values of elastic modulus of cement sheath-1 and cement sheath-2 are 5GPa and 5GPa to 30GPa,respectively.Under the in-situ stress ratio σh/σH=0.7,the maximum mises stress of cementsheath-1 and cement sheath-2 increase as the increase of σh,and they are nearly equal when σh=15GPa.This research can be helpful for the design and analysis of CCF multilayer composite system.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in a...Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.展开更多
The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharop...The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12272402 and11972365)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.11925205)the National Natural Science Foundation of China(Nos.51921003 and U2341230)。
文摘Multilayered van der Waals(vdW)materials have attracted increasing interest because of the manipulability of their superior optical,electrical,thermal,and mechanical properties.A mass-spring model(MSM)for elastic wave propagation in multilayered vdW metamaterials is reported in this paper.Molecular dynamics(MD)simulations are adopted to simulate the propagation of elastic waves in multilayered vdW metamaterials.The results show that the graphene/MoS_(2)metamaterials have an elastic wave bandgap in the terahertz range.The MSM for the multilayered vdW metamaterials is proposed,and the numerical simulation results show that this model can well describe the dispersion and transmission characteristics of the multilayered vdW metamaterials.The MSM can predict elastic wave transmission characteristics in multilayered vdW metamaterials stacked with different two-dimensional(2D)materials.The results presented in this paper offer theoretical help for the vibration reduction of multilayered vdW semiconductors.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
基金supported by the China Postdoctoral Science Foundation(2022M722637)as well as the Natural Science Foundation of Sichuan Province(2022NSFSC0190).
文摘A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.
文摘Formation damage evaluation is an important component in well test analysis and for- mation evaluation. Formation damage of one-layer reservoir has been studied by decomposing the total skin factor and estimating the mud pollution depth. And the well test analyses for multilayered reservoirs were reported, but relation between the total skin factor and individual layer skin factor has not been considered. The relation is devel-oped in this note with well test analysis combining numerical simulation, which aids properly evaluating formation and making stimulating decision.
基金financially supported by the National Natural Science Foundation of China(Nos.51801081 and 52171071)national funds through FCT of Portugal-Fundacao para a Ciencia e a Tecnologia,under a scientific contract of 2021.04115,CEMMPRE-ref.“UIDB/00285/2020”and LA/P/0112/2020 projects+2 种基金FEDER funds through the COMPETE program-Operational Program on Competitiveness Factorsnational funds through FCT-Foundation for Science and Technology,Outstanding University Young Teachers of“Qing Lan Project”of Jiangsu Province of China,Excellent Talents of“Shenlan Project”of Jiangsu University of Science and Technology of ChinaA part of this study was supported by the Directorate-General of Scientific Research and Technological Development(Algeria)。
文摘In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear.
基金financial support from the Natural Science Foundation of Shandong Province(ZR2015CM037)the National Science Foundation of China(31571890)。
文摘The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.
基金the National Natural Science Foundation of China(Grant Nos.11974010 and 12274313)the National Key R&D Program of China(Grant Nos.2022YFA1404400 and 2022YFA1404300)。
文摘Near-field radiative heat transfer(NFRHT) research is an important research project after a major breakthrough in nanotechnology. Based on the multilayer structure, we find that due to the existence of inherent losses,the decoupling of hyperbolic modes(HMs) after changing the filling ratio leads to suppression of heat flow near the surface mode resonance frequency. It complements the physical landscape of enhancement of near-field radiative heat transfer by HMs and more surface states supported by multiple surfaces. More importantly, considering the difficulty of accurate preparation at the nanoscale, we introduce the disorder factor to describe the magnitude of the random variation of the layer thickness of the multilayer structure and then explore the effect on heat transfer when the layer thickness is slightly different from the exact value expected. We find that the near-field radiative heat flux decreases gradually as the disorder increases because of interlayer energy localization. However, the reduction in heat transfer does not exceed an order of magnitude, although the disorder is already very large. At the same time, the regulation effect of the disorder on NFRHT is close to that of the same degree of filling ratio,which highlights the importance of disordered systems. This work qualitatively describes the effect of disorder on heat transfer and provides instructive data for the fabrication of NFRHT devices.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174242)the National Key Research and Development Program of China (Grant No. 2018YFA0704300)+1 种基金the Key Research Project of Zhejiang Laboratory (Grant No. 2021PE0AC02)the support by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.
基金funded by the Deanship of Scientific Research in Cooperation with Olive Research Center at Jouf University under Grant Number(DSR2022-RG-0163).
文摘Smart Agriculture,also known as Agricultural 5.0,is expected to be an integral part of our human lives to reduce the cost of agricultural inputs,increasing productivity and improving the quality of the final product.Indeed,the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important.To provide more comprehensive protection against potential cyber-attacks,this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture.The proposed Intrusion Detection System IDS,namely GMLPIDS,combines the feedforward neural network Multilayer Perceptron(MLP)and the Gaussian Mixture Model(GMM)that can better protect the Smart Agriculture system.GMLP-IDS is evaluated with the CIC-DDoS2019 dataset,which contains various Distributed Denial-of-Service(DDoS)attacks.The paper first uses the Pearson’s correlation coefficient approach to determine the correlation between the CIC-DDoS2019 dataset characteristics and their corresponding class labels.Then,the CIC-DDoS2019 dataset is divided randomly into two parts,i.e.,training and testing.75%of the data is used for training,and 25%is employed for testing.The performance of the newly proposed IDS has been compared to the traditional MLP model in terms of accuracy rating,loss rating,recall,and F1 score.Comparisons are handled on both binary and multi-class classification problems.The results revealed that the proposed GMLP-IDS system achieved more than 99.99%detection accuracy and a loss of 0.02%compared to traditional MLP.Furthermore,evaluation performance demonstrates that the proposed approach covers a more comprehensive range of security properties for Smart Agriculture and can be a promising solution for detecting unknown DDoS attacks.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education,Saudi Arabia,for funding this research work through the project number(QU-IF-2-4-4-26466)The authors also thank Qassim University for its technical support.
文摘The diagnosis of liver fibrosis(LF)is crucial as it is a deadly and life-threatening disease.Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system,which helps to take decisions about patients’health as experts can.The historical data of a patient’s health can have vagueness,inaccurate,and can also have missing values.The fuzzy logic theory can deal with these issues in the dataset.In this paper,a multilayer fuzzy expert system is developed to diagnose LF.The model is created by using multiple layers of the fuzzy logic approach.This system aids in classifying the health of patients into different classes.The proposed method has two layers,i.e.,layer 1 and layer 2.The input variables used in layer 1 for diagnosing liver fibrosis are Appetite,Jaundice,Ascites,Age,and Fatigue.Similarly,in layer 2,the input variables are Platelet count,White blood cell count,spleen,SGPT ALT(Serum Glutamic Pyruvic Transaminase Alanine Aminotransferase),SGOT ALT(Serum Glutamicoxalacetic Transaminase Alanine Aminotransferase),Serum bilirubin,and Serum albumin.The output variables for this developed system are no damage,minimal damage,significant damage,severe damage,and cirrhosis.This research work also presents the examination of results based on performance parameters.The proposed system achieves a classification accuracy of 95%.Moreover,other performance parameters such as sensitivity,specificity,and precision are calculated as 97.14%,92%,and 94.44%,respectively.
基金Project supported in part by the National Key R&D Program of China(Grant No.2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.11974348 and 11834014)+2 种基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB28000000 and XDB33000000)supported in part by the Training Program of Major Research plan of the National Natural Science Foundation of China(Grant No.92165105)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)。
文摘Valley Nernst effect is a newly proposed and experimentally confirmed effect,which could be used to design novel thermoelectric devices.We study the valley Nernst effect in(M+N)-layer twisted multilayer graphene systems by a simple low-energy effective model.It is found that the total valley Nernst coefficient(VNC)is three orders of magnitude larger than that in monolayer group-Ⅵdichalcogenides.The total VNC increases with the increase of layer numbers.It is shown that the total VNC exhibits a structure with three peaks as a function of the Fermi energy.We identify that the central peak is always negative stemming from the flat band.Two shoulder peaks are positively induced by the conduction and valence bands,respectively.These predicted features can be tested experimentally.The present work would shed more light on valley caloritronics.
基金This work was financially supported by the High‐level Talents'Discipline Construction Fund of Shandong University(31370089963078)the Shandong Provincial Science and Technology Major Project(2018JM RH0211 and 2017CXGC1010)+3 种基金the Research Funds of Shandong University(10000089395121)the Natural Science Foundation of Shandong Province(ZR2019MEM052 and ZR2017MEM002)The National Natural Science Foundation of China(grant no.52002287)the Start‐up Funding of Wenzhou University are acknowledged.
文摘Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.
基金the Independent Innovation Research Program of China University of Petroleum(East China)(Grant No.27RA2215005)the National Key Research and Development Program of China(Grant No.2017YFC0307604).
文摘This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are based on the traditional CCF system with the single casing and cement sheath,but these results are not adaptive to the CCF system multiple composite system.In this paper,the FEM numerical model of CCF multilayer composite system was constructed.Numerical simulations were calculated and compared with the system which consists of the single casing and cement sheath.Results show that the multilayer composite system possesses better performance.On this basis,the sensitivity analysis of main influence mechanical parameters such as in-situ stress,the elastic of cement sheathes and the elastic of formation are conducted.The cement sheath on the inside,namely cement sheath-1,is sensitive to its elastic modulus;meanwhile,the cement sheath on the outside,namely cement sheath-2,is not so sensitive to the elastic modulus of cement sheath-1.Cement sheath-1 and cement sheath-2 are all sensitive to the elastic modulus of cement sheath-2,and the mises stress of them has opposite trend to the elastic modulus of cement sheath-2.The proper values of elastic modulus of cement sheath-1 and cement sheath-2 are 5GPa and 5GPa to 30GPa,respectively.Under the in-situ stress ratio σh/σH=0.7,the maximum mises stress of cementsheath-1 and cement sheath-2 increase as the increase of σh,and they are nearly equal when σh=15GPa.This research can be helpful for the design and analysis of CCF multilayer composite system.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
基金Projects(51204036,51234009)supported by the National Natural Science Foundation of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.
文摘The ultrastructure of the blepharoplast and the multilayered structure (MLS) in the fern Osmunda cinnamomea var. asiatica Fernald have been studied by electron microscopy with respect to spermatogenesis. The blepharoplast appears in the young spermatid. The differentiating blepharoplast is approximately a spherical body, which is composed of densely stained granular material in the center and some cylinders outside of it. The differentiated blepharoplast is also a sphere, but without the densely stained material in the center, consisting of scattered or radially arranged cylinders. The MLS seen in the spermatid lies between the basal bodies and the giant mitochondrion. In the early developmental stage, the MLS only consists of lamellar layers, each of which runs parallel to one another and forms a strip. In the mid stage, the MLS is composed of the microtubular ribbon (MTr), the lamellar layers and a layer of plaque. In the late stage, the MLS forms accessory band, osmiophilic crest and a layer of osmiophilic material. The MTr grows out from the MLS and extends along the surface of the nucleus to unite with the nuclear envelope in a complex. The basal body coming from the cylinder produces the axoneme of the flagella in the distal end and the wedge-shaped structure in the proximal end, respectively. In the present study, the ultrastructural features of blepharoplast and the MLS of the protoleptosporangiopsida fern, O. cinnamomea var. asiatica, have been described and compared with those of other kinds of pteridophytes in detail. The lamellar layers appearing before the formation of the MTr was found and reported for the first time.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.