The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the convent...The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the conventional MLCBFM based on Foldy-Lax multiple scattering equations,the improvement is only made in the generation of characteristic basis functions(CBFs).However,it does not provide a change in impedance matrix filling and reducing matrix calculation procedure,which is time-consuming.In reality,all the impedance and reduced matrix of each level of the MLCBFM have low-rank property and can be calculated efficiently.Therefore,ACA is used for the efficient generation of two-level CBFs and the fast calculation of reduced matrix in this study.Numerical results are given to demonstrate the accuracy and efficiency of the method.展开更多
基金supported by the National Natural Science Foundation of China (No.61401003)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20123401110006)the Natural Science Research Project of Anhui Education ( No. KJ2015A436)
文摘The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the conventional MLCBFM based on Foldy-Lax multiple scattering equations,the improvement is only made in the generation of characteristic basis functions(CBFs).However,it does not provide a change in impedance matrix filling and reducing matrix calculation procedure,which is time-consuming.In reality,all the impedance and reduced matrix of each level of the MLCBFM have low-rank property and can be calculated efficiently.Therefore,ACA is used for the efficient generation of two-level CBFs and the fast calculation of reduced matrix in this study.Numerical results are given to demonstrate the accuracy and efficiency of the method.