Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,...To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,which is then fed into downstream learning modules.Co-SFM employs an upstream fusion module to incorporate multilevel data,thereby constructing a macro-plate-micro data structure.This configuration helps identify and integrate characteristics from different data levels,facilitating a deeper understanding of the internal links within the financial system.In the downstream model,Co-SFM uses a state-frequency memory network to mine hidden frequency information within stock prices,and the multifrequency patterns of sequential data are modeled.Empirical results show that Co-SFM s prediction accuracy for stock price trends is significantly better than that of other models.This is especially evident in multistep medium and long-term trend predictions,where integrating multilevel data results in notably improved accuracy.展开更多
To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucello...[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
基于模块化多电平换流器的柔性直流输电(modular multilevel convertor based high voltage direct current,MMC-HVDC)系统存在的中高频振荡问题严重危胁电力系统的正常运行。首先,基于MMC的动态相量模型,建立了MMC的交流侧阻抗模型;其...基于模块化多电平换流器的柔性直流输电(modular multilevel convertor based high voltage direct current,MMC-HVDC)系统存在的中高频振荡问题严重危胁电力系统的正常运行。首先,基于MMC的动态相量模型,建立了MMC的交流侧阻抗模型;其次,利用阻抗法分析控制环节及控制参数对MMC阻抗特性的影响,得到了功率外环、电流内环及控制链路延时是导致MMC呈现负阻尼特性的主要原因;再次,在分析现有基于电压前馈环节和电流内环的协同振荡抑制策略不足的基础上,提出了功率外环附加直流电流反馈的振荡抑制策略,极大程度消除系统中的谐波分量,改善了MMC的阻抗特性;最后,通过电磁仿真软件验证理论分析和抑制措施的正确性与有效性。展开更多
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金The National Natural Science Foundation of China(No.72173018).
文摘To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,which is then fed into downstream learning modules.Co-SFM employs an upstream fusion module to incorporate multilevel data,thereby constructing a macro-plate-micro data structure.This configuration helps identify and integrate characteristics from different data levels,facilitating a deeper understanding of the internal links within the financial system.In the downstream model,Co-SFM uses a state-frequency memory network to mine hidden frequency information within stock prices,and the multifrequency patterns of sequential data are modeled.Empirical results show that Co-SFM s prediction accuracy for stock price trends is significantly better than that of other models.This is especially evident in multistep medium and long-term trend predictions,where integrating multilevel data results in notably improved accuracy.
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金Supported by Special Research Fund for Public Sector(Agriculture)(200903055)~~
文摘[Objective] The study was to explore the major factors affecting diary cattle brucellosis risk assessment,as well as their strong-to-weak sequence,so as to provide theoretical basis for assessing diary cattle brucellosis risk level in different regions.[Method] From 4 dimensions of feeding and importing,breeding,housing and polyculture situation,an evaluation index system was set up,and diary cattle brucellosis risk survey was conducted in 3 typical regions.Finally,systematic multilevel grey relation entropy method was applied to perform data analysis.[Result] The strong-to-weak sequence of Level 1 impact factor of diary cattle brucellosis was as follows:feeding and importinghousingpolyculture situationbreeding;the sequence of Level 2 impact factor was U32〉U12〉U11〉U31〉U21〉U42〉U43〉U23〉U22〉U41;the risk level sequence of 3 typical regions was Province A(County A1,A2,A3)Province B(County B1,B2,B3)Province C(County C1,C2,C3).[Conclusion] According to the weight of Level 1 index strata,administrative departments at all levels and dairy cattle farmers should lay emphasis on the aspects of feeding,importing and housing;viewed from the perspective of Level 2 index strata,dairy cattle farmers should value the siting of cattle field,the brucellosis surveillance before importing and milking modes most.According to the diary cattle brucellosis risk level of 3 typical regions,if administrative departments at all levels strengthen peoples' awareness of their personal health and increase investment in this area,with new healthy cultured atmosphere built,the risk level of diary cattle brucellosis will surly decline.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
文摘基于模块化多电平换流器的柔性直流输电(modular multilevel convertor based high voltage direct current,MMC-HVDC)系统存在的中高频振荡问题严重危胁电力系统的正常运行。首先,基于MMC的动态相量模型,建立了MMC的交流侧阻抗模型;其次,利用阻抗法分析控制环节及控制参数对MMC阻抗特性的影响,得到了功率外环、电流内环及控制链路延时是导致MMC呈现负阻尼特性的主要原因;再次,在分析现有基于电压前馈环节和电流内环的协同振荡抑制策略不足的基础上,提出了功率外环附加直流电流反馈的振荡抑制策略,极大程度消除系统中的谐波分量,改善了MMC的阻抗特性;最后,通过电磁仿真软件验证理论分析和抑制措施的正确性与有效性。