期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Method of Inequalities-based Multiobjective Genetic Algorithm for Optimizing a Cart-double-pendulum System 被引量:3
1
作者 Tung-Kuan Liu Chiu-Hung Chen +1 位作者 Zu-Shu Li Jyh-Horng Chou 《International Journal of Automation and computing》 EI 2009年第1期29-37,共9页
This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS). The designed controller, which is based on the ... This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS). The designed controller, which is based on the human-simulated intelligent control (HSIC) method, builds up different control modes to monitor and control the CDPS during four kinetic phases consisting of an initial oscillation phase, a swing-up phase, a posture adjustment phase, and a balance control phase. For the approach, the original method of inequalities-based (MoI) multiobjective genetic algorithm (MMGA) is extended and applied to the case study which uses a set of performance indices that includes the cart displacement over the rail boundary, the number of swings, the settling time, the overshoot of the total energy, and the control effort. The simulation results show good responses of the CDPS with the controllers obtained by the proposed approach. 展开更多
关键词 genetic algorithms human-simulated intelligent control (HSIC) method of inequalities (MoI) multiobjective control.
下载PDF
Diversity of Pareto front: A multiobjective genetic algorithm based on dominating information 被引量:1
2
作者 Wei CHEN 1 , Jingyu YAN 2 , Mei CHEN 1 , Xin LI 1 (1.Department of Automation, Hefei University of Technology, Hefei Anhui 230009, China 2.Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Hong Kong, China) 《控制理论与应用(英文版)》 EI 2010年第2期222-228,共7页
In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking me... In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking method based on dominating number is proposed to build the Pareto front. Without increasing basic Pareto method’s computation complexity and introducing new parameters, a new multiobjective genetic algorithm based on proposed ranking method (MOGA-DN) is presented. Simulation results on function optimization and parameters optimization of control system verify the efficiency of MOGA-DN. 展开更多
关键词 Dominating number Ranking method multiobjective genetic algorithm
下载PDF
Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process 被引量:4
3
作者 Alireza Behroozsarand Akbar Zamaniyan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期99-109,共11页
In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming... In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery. 展开更多
关键词 amine plant multiobjective optimization Non-Dominated Sorting genetic Algorithm amine circulation rate
下载PDF
Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms 被引量:7
4
作者 ANDRES-TOROB. GIRON-SIERRAJ.M. FERNANDEZ-BLANCOP. LOPEZ-OROZCOJ.A. BESADA-PORTASE. 《Journal of Zhejiang University Science》 CSCD 2004年第4期378-389,共12页
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe... This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules. 展开更多
关键词 multiobjective optimization genetic algorithms Industrial control Multivariable control systems Fermenta- tion processes
下载PDF
Multiobjective Optimization of the Industrial Naphtha Catalytic Re-forming Process 被引量:7
5
作者 侯卫锋 苏宏业 +1 位作者 牟盛静 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期75-80,共6页
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki... In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set. 展开更多
关键词 multiobjective optimization catalytic reforming lumped kinetics model neighborhood and archived genetic algorithm (NAGA)
下载PDF
Genetic algorithm for pareto optimum-based route selection 被引量:1
6
作者 Cui Xunxue Li Qin Tao Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期360-368,共9页
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC... A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance. 展开更多
关键词 Route selection multiobjective optimization Pareto optimum Multi-constrained path genetic algorithm.
下载PDF
Investigation of the optimum differential gear ratio for real driving cycles by experiment design and genetic algorithm 被引量:1
7
作者 AHMED Aboud 赵长禄 张付军 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期65-73,共9页
Experiment statistical method and genetic algorithms based optimization method are used to obtain the optimum differential gear ratio for heavy truck that provides best fuel consumption when changing the working condi... Experiment statistical method and genetic algorithms based optimization method are used to obtain the optimum differential gear ratio for heavy truck that provides best fuel consumption when changing the working condition that affects its torque and speed range. The aim of the study is to obtain the optimum differential gear ratio with fast and accurate optimization calculation without affecting drivability characteristics of the vehicle according to certain driving cycles that represent the new working conditions of the truck. The study is carried on a mining dump truck YT3621 with 9 for- ward shift manual transmission. Two loading conditions, no load and 40 t, and four on road real driving cycles have been discussed. The truck powertrain is modeled using GT-drive, and DOE -post processing tool of the GT-suite is used for DOE analysis and genetic algorithm optimization. 展开更多
关键词 heavy trucks fuel consumption OPTIMIZATION design of experiment genetic algo-rithm differential gear ratio
下载PDF
Local Search-Inspired Rough Sets for Improving Multiobjective Evolutionary Algorithm
8
作者 Ahmed A. EL-Sawy Mohamed A. Hussein +1 位作者 El-Sayed Mohamed Zaki Abd Allah A. Mousa 《Applied Mathematics》 2014年第13期1993-2007,共15页
In this paper we present a new optimization algorithm, and the proposed algorithm operates in two phases. In the first one, multiobjective version of genetic algorithm is used as search engine in order to generate app... In this paper we present a new optimization algorithm, and the proposed algorithm operates in two phases. In the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approximate true Pareto front. This algorithm is based on concept of co-evolution and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept e-dominance. Then, in the second stage, rough set theory is adopted as local search engine in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for benchmark problems, are promising when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for solving real-world application problems. 展开更多
关键词 multiobjective Optimization genetic ALGORITHMS ROUGH SETS Theory
下载PDF
异构边缘云架构下的多任务卸载算法 被引量:1
9
作者 尼俊红 臧云 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第4期800-807,共8页
为在资源有限的终端设备上运行计算密集型与时延敏感型应用,同时降低系统时延和能耗,构建边缘云异构网络模型。本文提出了一种H-PSOGA多任务卸载优化算法,并通过无人机、路边单元、车辆等边缘设备以及边缘云服务器进行多任务计算卸载。... 为在资源有限的终端设备上运行计算密集型与时延敏感型应用,同时降低系统时延和能耗,构建边缘云异构网络模型。本文提出了一种H-PSOGA多任务卸载优化算法,并通过无人机、路边单元、车辆等边缘设备以及边缘云服务器进行多任务计算卸载。该算法以先串行再并行的方式将粒子群和遗传算法结合在一起,通过适应度值排序、种群选择、多点交叉、反向变异等操作,利用遗传算法对粒子群进行优选,弥补粒子群算法早熟收敛、陷入局部最优的缺陷。6种标准测试函数的测试分析以及与基线方案进行仿真对比的结果表明:在用户数较多时,混合优化算法的系统平均开销可降低26%~43%,可以有效提高收敛精度。 展开更多
关键词 移动边缘计算 异构网络 边缘节点 任务卸载 粒子群算法 遗传算法 多目标优化 标准测试函数
下载PDF
聚能射孔弹粉末药型罩本构参数反演研究
10
作者 叶贵根 孟康 《实验技术与管理》 CAS 北大核心 2024年第9期92-100,共9页
为了获得能够准确描述聚能射孔弹中粉末药型罩在高温、高压、大变形条件下力学行为的Johnson-Cook(J-C)本构参数,使其适用于射孔的数值模拟,该文提出了一种基于有限元仿真的药型罩本构反演方法。搭建了地面射孔实验,并使用ANSYS/LS-DYN... 为了获得能够准确描述聚能射孔弹中粉末药型罩在高温、高压、大变形条件下力学行为的Johnson-Cook(J-C)本构参数,使其适用于射孔的数值模拟,该文提出了一种基于有限元仿真的药型罩本构反演方法。搭建了地面射孔实验,并使用ANSYS/LS-DYNA对聚能射孔弹侵彻钢靶的过程进行动态仿真,系统分析了各本构参数对射孔深度和射孔孔径的影响规律,再利用响应曲面法和多目标遗传算法结合实验数据对粉末药型罩的J-C本构参数进行反演,最后基于反演得到的粉末药型罩本构参数开展射孔过程数值模拟,并与实验结果进行对比验证。结果表明:模拟得到的射孔深度、射孔孔径与实验数据间的误差均小于5%,并且射流形态和射流速度与实验结果具有很好的吻合度,表明反演所得的粉末药型罩本构参数能够较为可靠地反映其在射孔过程中的变形流动行为。 展开更多
关键词 射孔实验 射孔数值模拟 Johnson-Cook本构 响应曲面法 多目标遗传算法
下载PDF
铰接式基础风力机多目标优化及动力响应研究
11
作者 章培 李焱 +2 位作者 唐友刚 杨树耕 曲晓奇 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期9-16,共8页
针对一种新型铰接式基础风力机的基础结构设计与优化问题,综合考虑风力机运行安全稳性、经济成本及运动性能等多方面因素,本文建立了高维三目标优化数学模型,采用一种基于参考点的非支配排序多目标遗传算法(NSGA-Ⅲ)对风力机基础结构尺... 针对一种新型铰接式基础风力机的基础结构设计与优化问题,综合考虑风力机运行安全稳性、经济成本及运动性能等多方面因素,本文建立了高维三目标优化数学模型,采用一种基于参考点的非支配排序多目标遗传算法(NSGA-Ⅲ)对风力机基础结构尺寸进行优化设计研究,利用模糊优选方法,对所得到的帕累托解进行模糊评价,得到满足不同评价指标下的最优方案;并在此基础上,采用空气动力-水动力-结构耦合分析方法,利用Matlab在时域内编写运动控制方程进行动力响应分析。计算结果表明:额定风速海况下,所设计的铰接式基础风力机满足安全发电作业要求,同时相比于初始设计方案,基于多目标优化算法及模糊评价所设计的基础结构无论是运动及载荷性能都更加优越,经济成本更低;相关算法及优化流程也为后续不同基础形式的优化设计工作提供了新思路和参考。 展开更多
关键词 非支配排序 多目标遗传算法 优化设计 模糊优选 模糊评价 评价指标 耦合分析 动力响应
下载PDF
多级离心泵叶轮和蜗壳协同优化研究
12
作者 赵建涛 裴吉 +1 位作者 袁建平 王文杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1670-1678,共9页
为了解决多级离心泵高效运行区窄,整体能效偏低的问题,本文对比转速为64.3的双进口多级离心泵叶轮和蜗壳进行了优化设计研究。对比了不同代理模型在多级离心泵水力性能优化中的适用性,选择了GA-BP神经网络作为最优代理模型,以叶轮和蜗壳... 为了解决多级离心泵高效运行区窄,整体能效偏低的问题,本文对比转速为64.3的双进口多级离心泵叶轮和蜗壳进行了优化设计研究。对比了不同代理模型在多级离心泵水力性能优化中的适用性,选择了GA-BP神经网络作为最优代理模型,以叶轮和蜗壳的9个主要设计参数作为优化变量,0.6Qd和1.0Qd工况泵的效率为优化目标,通过拉丁超立方抽样方法和自动数值分析程序构建样本库,使用NSGA-II算法获得多目标优化问题的帕累托最优解,并根据实际工程需求选取了适当的参数组合。结果表明:模型泵在小流量工况和设计工况点效率分别提高了2.49%和3.09%,大流量工况扬程陡降问题得到缓解。该方法可以为多级离心泵的正向设计提供参考。 展开更多
关键词 多级离心泵 匹配优化 能效优化 多目标优化 反向传播神经网络 遗传算法 数值模拟 代理模型
下载PDF
基于NSGA-Ⅱ串行模式搜索的新能源发电与抽水蓄能电站联合系统多时间尺度优化调度方法 被引量:1
13
作者 姜淇 常玉红 +1 位作者 衣传宝 陈之栩 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期434-441,共8页
针对新能源发电与抽水蓄能电站联合发电系统,提出一种多时间尺度优化调度策略,并提出一种结合快速非支配排序遗传算法(NSGA-Ⅱ)和模式搜索算法的NSGA-Ⅱ-PS算法,该策略针对不同的时间尺度分别设定目标函数与约束条件,对比NSGA-Ⅱ与NSGA-... 针对新能源发电与抽水蓄能电站联合发电系统,提出一种多时间尺度优化调度策略,并提出一种结合快速非支配排序遗传算法(NSGA-Ⅱ)和模式搜索算法的NSGA-Ⅱ-PS算法,该策略针对不同的时间尺度分别设定目标函数与约束条件,对比NSGA-Ⅱ与NSGA-Ⅱ-PS在解决本调度问题结果上的优劣性。在日前、日中时间尺度对联合系统进行优化调度,制定调度计划。结果表明:在高比例新能源消纳的基础上,新能源发电与抽水蓄能电站联合系统多时间尺度优化调度可在日前、日中尺度实现联合系统经济安全运行。 展开更多
关键词 新能源 抽水蓄能电站 多目标优化 调度 快速非支配遗传算法
下载PDF
Design-space adaptation method for multiobjective and multidisciplinary optimization
14
作者 Jongho JUNG Kwanjung YEE Shinkyu JEONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期166-189,共24页
This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the soluti... This paper developed a new method that adaptively adjusts a design space by considering the actual solution distribution of a problem to overcome the conventional design-space adaptation method that assumes the solutions distribution to be a normal distribution because the distributions of solutions are rarely normal distributions for real-world problems.The developed method was applied to nineteen multiobjective test functions that are widely used to evaluate the characteristics and performance of optimization approaches.The results showed that this method adapted the design space to an appropriate design space where the solution existence probability was high.The optimization performance achieved using the developed method was higher than that of the conventional methods.Furthermore,the developed method was applied to the conceptual design of an unmanned spacecraft to confirm its validity in real-world design and multidisciplinaryoptimization problems.The results showed that the Pareto solutions of the developed method were superior to those of conventional methods.Additionally,the optimization efficiency with the developed method was improved by more than 1.4 times over that of the conventional methods.In this regard,the developed method has the potential to be applied to complicated real-world optimization problems to achieve better performance and efficiency. 展开更多
关键词 multiobjective optimization multiobjective genetic algorithm Design-space adaptation Multidisciplinary optimization Hypersonic vehicle
原文传递
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制
15
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 CatBoost-NSGA-Ⅲ算法
下载PDF
基于NSGA II的智慧交通信号优化控制研究
16
作者 傅思萍 《河北软件职业技术学院学报》 2024年第2期1-4,共4页
随着城市私家车的日益增多,交通拥堵等问题也越来越严重。交叉路口交通信号配时直接影响道路通行效率,而定时或多时段控制交通信号,无法及时根据车、人流量优化控制交通信号。以城市单交叉路口三车道为基础,来探讨基于NSGA II的智慧交... 随着城市私家车的日益增多,交通拥堵等问题也越来越严重。交叉路口交通信号配时直接影响道路通行效率,而定时或多时段控制交通信号,无法及时根据车、人流量优化控制交通信号。以城市单交叉路口三车道为基础,来探讨基于NSGA II的智慧交通信号优化方案,以车辆延误、排序长度和行人延误三个目标优化交通信号配时方案。通过实验分析NSGA II和GA算法表明,NSGA II在多目标交通信号中配时更智慧,能取得更优交通效益。 展开更多
关键词 智慧交通信号 遗传算法 多目标优化 精英保留策略 快速非支配排序
下载PDF
基于PSO-GA算法的后方仓库货位分配优化
17
作者 邱雄飞 张桦 赵润泽 《信息工程大学学报》 2024年第4期423-427,共5页
针对当前部队后方仓库的货位分配效率不高的问题,将传统的粒子群优化(PSO)算法和遗传算法(GA)相结合,构建一种混合求解模型。结合实例通过仿真分析表明,该混合算法与传统的PSO和GA相比,具有一定的优越性,能够有效提高仓库作业效率和货... 针对当前部队后方仓库的货位分配效率不高的问题,将传统的粒子群优化(PSO)算法和遗传算法(GA)相结合,构建一种混合求解模型。结合实例通过仿真分析表明,该混合算法与传统的PSO和GA相比,具有一定的优越性,能够有效提高仓库作业效率和货架稳定性,对后方仓库的货位分配研究具有一定的理论价值和实践意义。 展开更多
关键词 后方仓库 货位分配 粒子群算法 遗传算法 多目标优化
下载PDF
Genetic Algorithms Development for MultiobjectiveDesign Optimization of Compressor Cascade 被引量:1
18
作者 Jun LI(Venture Laboratory, Graduate School, Kyoto institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan)Koji Morinishi Nobuyuki Satofuka(Department of Mechanical and System Engineering, Kyoto Institute of Technology, Matsugasaki,Sakyo-ku, 《Journal of Thermal Science》 SCIE EI CAS CSCD 1999年第3期158-165,共8页
Aerodynamic optimization design of compressor blade shape is a design challenge at present because itis inherently a multiobjective problem. Thus, multiobjective Genetic Algorithms based on the multibranch simulated a... Aerodynamic optimization design of compressor blade shape is a design challenge at present because itis inherently a multiobjective problem. Thus, multiobjective Genetic Algorithms based on the multibranch simulated annealing selection and collection of Pareto solutions strategy have been developedand applied to the optimum design of compressor cascade. The present multiobjective design seeks highpressure rise, high flow turning angle and low total pressure loss at a low inlet Mach number. Paretosolutions obtain the better aerodynamic performance of the cascade than the existing Control DiffusionAirfoil. From the Pareto solutions, the decision maker would be able to find a design that satisfies hisdesign goal best. The results indicate that the feasibility of multiobjective Genetic Algorithms as amultiple objectives optimization tool in the engineering field. 展开更多
关键词 multiobjective optimization genetic algorithms Pareto optimal set compressor cascade design.
原文传递
Optimizing the Double Inverted Pendulum′s Performance via the Uniform Neuro Multiobjective Genetic Algorithm 被引量:3
19
作者 Dony Hidayat Al-Janan Hao-Chin Chang +1 位作者 Yeh-Peng Chen Tung-Kuan Liu 《International Journal of Automation and computing》 EI CSCD 2017年第6期686-695,共10页
An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before... An inverted pendulum is a sensitive system of highly coupled parameters, in laboratories, it is popular for modelling nonlinear systems such as mechanisms and control systems, and also for optimizing programmes before those programmes are applied in real situations. This study aims to find the optimum input setting for a double inverted pendulum(DIP), which requires an appropriate input to be able to stand and to achieve robust stability even when the system model is unknown. Such a DIP input could be widely applied in engineering fields for optimizing unknown systems with a limited budget. Previous studies have used various mathematical approaches to optimize settings for DIP, then have designed control algorithms or physical mathematical models.This study did not adopt a mathematical approach for the DIP controller because our DIP has five input parameters within its nondeterministic system model. This paper proposes a novel algorithm, named Uni Neuro, that integrates neural networks(NNs) and a uniform design(UD) in a model formed by input and response to the experimental data(metamodel). We employed a hybrid UD multiobjective genetic algorithm(HUDMOGA) for obtaining the optimized setting input parameters. The UD was also embedded in the HUDMOGA for enriching the solution set, whereas each chromosome used for crossover, mutation, and generation of the UD was determined through a selection procedure and derived individually. Subsequently, we combined the Euclidean distance and Pareto front to improve the performance of the algorithm. Finally, DIP equipment was used to confirm the settings. The proposed algorithm can produce 9 alternative configured input parameter values to swing-up then standing in robust stability of the DIP from only 25 training data items and 20 optimized simulation results. In comparison to the full factorial design, this design can save considerable experiment time because the metamodel can be formed by only 25 experiments using the UD. Furthermore, the proposed algorithm can be applied to nonlinear systems with multiple constraints. 展开更多
关键词 Double inverted pendulum(DIP) Uni Neuro-hybrid UD multiobjective genetic algorithm(HUDMOGA) uniform design(UD) metamodel euclidean distance
原文传递
基于HPSOGA的多目标电动汽车充电优化 被引量:4
20
作者 曾伟哲 曾启林 +1 位作者 黎恒 王德南 《南方电网技术》 CSCD 北大核心 2023年第1期94-102,135,共10页
随着电动汽车保有量的快速上升,电动汽车无序并网充电将会给配电网负荷平稳带来巨大的不确定性,因此对电动汽车的充电进行优化十分重要。为此,提出一种基于混合粒子群优化遗传算法(hybrid particle swarm optimization genetic algorith... 随着电动汽车保有量的快速上升,电动汽车无序并网充电将会给配电网负荷平稳带来巨大的不确定性,因此对电动汽车的充电进行优化十分重要。为此,提出一种基于混合粒子群优化遗传算法(hybrid particle swarm optimization genetic algorithm,HPSOGA)的多目标电动汽车充电优化策略。使用Monte Carlo法基于用户出行规律建立电动汽车充电负荷曲线,在传统PSO算法的基础上引入GA算法的迭代机制,形成HPSOGA算法并用其对以用户充电费用最少和电网负荷波动率最小建立的多目标优化模型进行求解。结合具体算例进行仿真分析,结果显示基于HPSOGA算法的多目标电动汽车充电优化策略具有更快的优化速度以及更好的优化效果,进一步降低电网负荷峰值、提高电网负荷谷值,电网负荷波动率得到有效降低,同时用户充电成本得到有效减少。 展开更多
关键词 电动汽车 混合粒子群优化遗传算法(HPSOGA) 充电优化 多目标优化模型
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部