Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in...Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.展开更多
The change of channel is caused by Doppler effect, and the degree of change is related to relative velocity in the condition of the certain carrier frequency. The multipath fading channel is independent of each other,...The change of channel is caused by Doppler effect, and the degree of change is related to relative velocity in the condition of the certain carrier frequency. The multipath fading channel is independent of each other, whose amplitude obeys Rayleigh distribution and the phase obeys uniform distribution. The model of multipath time-varying transmission channel is built. Through the pro-cess of channel model building, the simulation results produced by the channel model verify the effect of the proposed model in the aspect of reducing test data. In a communication system, signal passing through the channel is involved with the process of digital modulation and demodulation. Binary sequence signal is modulated into a complex sequence in the process of modulation before the transmission in the channel, in order to accommodate the wireless channel transmission. With the increase of SNR, BER is overall slightly drops. However there exists violent fluctuation and it presents the random variation of details in the multipath channel. I employ the mathematical model of multipath time-varying channel, i.e. Jakes model to be simulated so as to compare with the AGWN channel in the same situation. Jakes model has the characteristics of the reference chan-nel compared with the AGWN. BER does not change with the increase of SNR significantly and coincides with multipath time-varying channel. The BER considerably decreases with the increase of SNR in the AGWN channel.展开更多
A model of an angle-spread source, termed the “Gaussian Channel Model” is considered. The cumulative distribution function of the Time-of-Arrival of the multipath components is derived for an arbitrary angle spread....A model of an angle-spread source, termed the “Gaussian Channel Model” is considered. The cumulative distribution function of the Time-of-Arrival of the multipath components is derived for an arbitrary angle spread. The simple approximate expressions for the Time-of-Arrival cumulative distribution function and probability density function are proposed. Numerical results obtained with the help of the derived expressions show the good coincidence with the experimental data and other known results.展开更多
Global Navigation Satellite System(GNSS)multipath channel models are fundamental and critical for signal simulation and receiver performance evaluation.They also aid the designing of suitable multipath error mitigatio...Global Navigation Satellite System(GNSS)multipath channel models are fundamental and critical for signal simulation and receiver performance evaluation.They also aid the designing of suitable multipath error mitigation algorithms when the properties of multipath channel are available.However,there is insufficient existing research on BeiDou Navigation Satellite System(BDS)signal multipath channel models.In this study,multipath channel statistical models are established on the basis of extensive datasets of the BDS B1I signal.A multipath parameter estimation algorithm is designed to extract information of multipath rays from the intermediate frequency data.The delay,power loss,Doppler fading frequency,and lifetime distribution models for static and dynamic vehicle platforms are established and compared,and the effects of the satellite orbit type and platform speed on the models are analyzed.The results reveal the detailed distribution and variation characteristics of the multipath parameters and are valuable for the development of accurate urban navigation systems.展开更多
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology (No.2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation (No. L172030)+2 种基金Beijing Municipal Science & Technology Commission Project (No. Z171100005217001)Key Project of State Key Lab of Networking and Switching Technology (NST20170205)National Key Technology Research and Development Program of the Ministry of Science and Technology of China (NO. 2012BAF14B01)
文摘Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.
文摘The change of channel is caused by Doppler effect, and the degree of change is related to relative velocity in the condition of the certain carrier frequency. The multipath fading channel is independent of each other, whose amplitude obeys Rayleigh distribution and the phase obeys uniform distribution. The model of multipath time-varying transmission channel is built. Through the pro-cess of channel model building, the simulation results produced by the channel model verify the effect of the proposed model in the aspect of reducing test data. In a communication system, signal passing through the channel is involved with the process of digital modulation and demodulation. Binary sequence signal is modulated into a complex sequence in the process of modulation before the transmission in the channel, in order to accommodate the wireless channel transmission. With the increase of SNR, BER is overall slightly drops. However there exists violent fluctuation and it presents the random variation of details in the multipath channel. I employ the mathematical model of multipath time-varying channel, i.e. Jakes model to be simulated so as to compare with the AGWN channel in the same situation. Jakes model has the characteristics of the reference chan-nel compared with the AGWN. BER does not change with the increase of SNR significantly and coincides with multipath time-varying channel. The BER considerably decreases with the increase of SNR in the AGWN channel.
文摘A model of an angle-spread source, termed the “Gaussian Channel Model” is considered. The cumulative distribution function of the Time-of-Arrival of the multipath components is derived for an arbitrary angle spread. The simple approximate expressions for the Time-of-Arrival cumulative distribution function and probability density function are proposed. Numerical results obtained with the help of the derived expressions show the good coincidence with the experimental data and other known results.
基金the National Key Research and Development Program of China(Grant No.2018YFB0505103)in part funded by the science and technology project of State Grid Corporation of China(No.SGSHJX00KXJS1901531)+1 种基金the National Natural Science Foundation of China(Grant No.61971278)the Equipment Pre-Research Foundation of China(Grant No.61404130218).
文摘Global Navigation Satellite System(GNSS)multipath channel models are fundamental and critical for signal simulation and receiver performance evaluation.They also aid the designing of suitable multipath error mitigation algorithms when the properties of multipath channel are available.However,there is insufficient existing research on BeiDou Navigation Satellite System(BDS)signal multipath channel models.In this study,multipath channel statistical models are established on the basis of extensive datasets of the BDS B1I signal.A multipath parameter estimation algorithm is designed to extract information of multipath rays from the intermediate frequency data.The delay,power loss,Doppler fading frequency,and lifetime distribution models for static and dynamic vehicle platforms are established and compared,and the effects of the satellite orbit type and platform speed on the models are analyzed.The results reveal the detailed distribution and variation characteristics of the multipath parameters and are valuable for the development of accurate urban navigation systems.