Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide...Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.展开更多
This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential ...This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.展开更多
Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of secu...Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.展开更多
In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of p...In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.展开更多
A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is b...A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.展开更多
A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic...A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.展开更多
A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme...A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme principally relies on splitting the traffic between different paths to make the best utilization of multiple routes.Linear programming is the main method used for multipath selection.The major constraints to the quality of service (QoS) (delay and link utilization) have been taken into account to meet the criteria of the advanced multimedia applications.Due to the effect of link utilization,the system encounters traffic flow oscillation between paths over time,which affects the system performance.Hence,to fix this issue,we propose a cognitive routing algorithm which reacts to the long-term changes of the traffic loads rather than short-term ones.The performance of the proposed routing techniques has been evaluated using appropriate simulation models and implemented by Matlab.展开更多
Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet serv...Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.展开更多
The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become ...The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.展开更多
In underground operation,primary consideration is safety.In recent decades,for minimizing accident and for preventing major economic losses and casualties,wireless sensors are used by various large mineral countries t...In underground operation,primary consideration is safety.In recent decades,for minimizing accident and for preventing major economic losses and casualties,wireless sensors are used by various large mineral countries through early warning.The Improved DV-Hop Localization Algorithm(IDVHLA)is used in existing works for doing this.However,accurate anchor node detection is impossible in existing works with the malicious nodes presence,where there won’t be any accurate sharing of anchor node’s location information.In case of emergency situation,faster communication is a highly complex one.A technique calledModified Distance Vector Hop based Multipath Routing Protocol(MDVHMRP)is introduced in this proposed research work for resolving this.In this work,to detect anchor node position,a Modified Distance Vector Hop technique is introduced.This research work considers time taken and session time for computing neighbour node’s presence in addition to hop count values.Malicious nodes presence can be avoided by considering session time in neighbour node presence detection.The alert message are send by people in emergency crisis to sever in initial condition.Then Dynamic Source Routing(DSR)routing protocol is used for doing immediate route path selection.In case of route path failure,for ensuring uninterrupted communication and faster communication,this work introduces amulti path routing.Themodified distance vector hop technique is used for predicting anchor node location information and predicted information will be transmitted.In NS2 simulation environment,overall evaluation of this research work is carried out.When compared with available techniques,localization accuracy is enhanced by proposed technique as proven in experimental results.展开更多
The vehicle ad hoc network that has emerged in recent years was originally a branch of the mobile ad hoc network.With the drafting and gradual establishment of standards such as IEEE802.11p and IEEE1609,the vehicle ad...The vehicle ad hoc network that has emerged in recent years was originally a branch of the mobile ad hoc network.With the drafting and gradual establishment of standards such as IEEE802.11p and IEEE1609,the vehicle ad hoc network has gradually become independent of the mobile ad hoc network.The Internet of Vehicles(Vehicular Ad Hoc Network,VANET)is a vehicle-mounted network that comprises vehicles and roadside basic units.This multi-hop hybrid wireless network is based on a vehicle-mounted self-organizing network.As compared to other wireless networks,such as mobile ad hoc networks,wireless sensor networks,wireless mesh networks,etc.,the Internet of Vehicles offers benefits such as a large network scale,limited network topology,and predictability of node movement.The paper elaborates on the Traffic Orchestration(TO)problems in the Software-Defined Vehicular Networks(SDVN).A succinct examination of the Software-defined networks(SDN)is provided along with the growing relevance of TO in SDVN.Considering the technology features of SDN,a modified TO method is proposed,which makes it possible to reduce time complexity in terms of a group of path creation while simultaneously reducing the time needed for path reconfiguration.A criterion for path choosing is proposed and justified,which makes it possible to optimize the load of transport network channels.Summing up,this paper justifies using multipath routing for TO.展开更多
Mobile Ad Hoc Network(MANET)is a group of node that would interrelate among each other through onemulti-hop wireless link,wherein the nodes were able to move in response to sudden modifications.The objective of MANET ...Mobile Ad Hoc Network(MANET)is a group of node that would interrelate among each other through onemulti-hop wireless link,wherein the nodes were able to move in response to sudden modifications.The objective of MANET routing protocol is to quantify the route and compute the best path,but there exists a major decrease in energy efficiency,difficulty in hop selection,cost estimation,and efficient load-balancing.In this paper,a novel least common multipath-based routing has been proposed.Multipath routing is used to find a multipath route from source and destination.Load balancing is of primary importance in the mobile ad-hoc networks,due to limited bandwidth among the nodes and the initiator of the load routing discovery phase in the multipath routing protocol.Fuzzy logic for load balancing multipath routing in MANETs is proposed,which ensures the data packets are sent through a path with the variance of binary sets to predict the original transformation of the data to be received in the system.The main objective of the proposed system is to reduce the routing time of data packets and avoid the traffic based on multipath source and destination.The experimental results have to verify 96.7%efficiency in balancing the load.展开更多
In recent years, Voice over IP (VoIP) has impacted global telecommunications and networking tremendously. Traffic engineering and Quality of Service (QoS) guarantees for VoIP services pose a challenge for network rese...In recent years, Voice over IP (VoIP) has impacted global telecommunications and networking tremendously. Traffic engineering and Quality of Service (QoS) guarantees for VoIP services pose a challenge for network researchers and designers. The repeated use of Internet Protocol shortest path towards the same destination may lead to unbalanced traffic situations and degraded network performance. Therefore, load balancing and link utilization become the critical functions in Internet Protocol routing for providing Quality of Service assurance for VoIP application. The aim of this work is to employ Multiprotocol Label Switching Network as a traffic engineering tool to enhance the QoS for VoIP applications. To achieve this, an effective Multiprotocol Label Switching Network load balancing architecture is developed that classifies the Internet traffic flows, routes the flows into multiple paths. Flow arrival rate, packet loss rate and delay are measured and taken as the input parameters and compared with the threshold values to identify the VoIP flow. Network load status is calculated by estimating the average buffer occupancy value and multipath routing is triggered when the network load is high to enhance the QoS. The investigated performance measures like throughput, delay and packet loss are reported to show the efficiency of the proposed technique for effective VoIP flows.展开更多
In this paper, a QoS multipath source routing protocol (QoS-MSR) is proposedfor ad hoc networks. It can collect QoS information through route discovery mechanism of multipathsource routing (MSR) and establish QoS rout...In this paper, a QoS multipath source routing protocol (QoS-MSR) is proposedfor ad hoc networks. It can collect QoS information through route discovery mechanism of multipathsource routing (MSR) and establish QoS route with reserved bandwidth. In order to reserve bandwidthefficiently, a bandwidth reservation approach called the multipath bandwidth splitting reservation(MBSR) is presented, under which the overall bandwidth request is split into several smallerbandwidth requests among multiple paths. In simulations, the authors introduce Insignia, an in-bindsignaling system that supports QoS in ad hoc networks, and extend it to multipath Insignia(M-Insignia) with QoS-MSR and MBSR. The results show that QoS-MSR routing protocol with the MBSRalgorithm can improve the call admission ratio of QoS traffic, the packet delivery ratio, and theend-to-end delay of both best-effort traffic and QoS traffic. Therefore, QoS-MSR with MBSR is anefficient mechanism that supports QoS for ad hoc networks.展开更多
The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applicatio...The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applications. However, the performance of these protocols is highly affected by the characteristics of the wireless channel and may be even inferior to the performance of single-path approaches. Specifically, when multiple adjacent paths are being used concurrently, the broadcast nature of wireless channels results in inter-path interference which significantly degrades end-to-end throughput. In this paper, we propose a Low- Interference Energy-efficient Multipath Routing protocol (LIEMRO) to improve the QoS requirements of event-driven applications. In addition, in order to optimize resource utilization over the established paths, LIEMRO employs a quality-based load balancing algorithm to regulate the amount of traffic injected into the paths. The performance gain of LIEMRO compared to the ETX-based single-path routing protocol is 85%, 80%, and 25% in terms of data delivery ratio, end-to-end throughput, and network lifetime, respectively. Furthermore, the end-to-end latency is improved more than 60%.展开更多
Multipath routing mechanism is vital for reliable packet delivery, load balance, and flexibility in the open network because its topology is dynamic and the nodes have limited capability. This article proposes a new m...Multipath routing mechanism is vital for reliable packet delivery, load balance, and flexibility in the open network because its topology is dynamic and the nodes have limited capability. This article proposes a new multipath switch approach based on traffic prediction according to some characteristics of open networks. We use wavelet neural network (WNN) to predict the node traffic because the method has not only good approximation property of wavelet, but also self-learning adaptive quality of neural network. When the traffic prediction indicates that the primary path is a failure, the alternate path will be occupied promptly according to the switch strategy, which can save time for the switch in advance The simulation results show that the presented traffic prediction model has better prediction accuracy; and the approach based on the above model can balance network load, prolong network lifetime, and decrease the overall energy consumption of the network.展开更多
Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide hig...Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide high-quality monitoring information, many WSN applications require high-rate data transmission. Multipath routing protocols are often used to increase the network transmission rate and throughput. Although large-scale WSN can be supported by high bandwidth backbone network, the WSN remains the bottleneck due to resource constraints of wireless sensors and the effects of wireless interference. In this paper, we propose a multipath energy-efficient routing protocol for WSN that considers wireless interference. In the proposed routing protocol, nodes in the interference zone of the discovered path are marked and not allowed to take part in the subsequent routing process. In this way, the quality of wireless communication is improved because the effects of wireless interference can be reduced as much as possible. The network load is distributed on multiple paths instead of concentrating on only one path, and node energy cost is more balanced for the entire wireless network. The routing protocol is simulated in NS2 software. Simulation result shows that the proposed routing protocol achieves lower energy cost and longer network lifetime than that in the literature.展开更多
Wireless mobile Ad-hoc network is a special network that all nodes can serf-organize and work together. It is flexible to form a network and extend the coverage area dynamically without infrastructure, so Ad-hoc netwo...Wireless mobile Ad-hoc network is a special network that all nodes can serf-organize and work together. It is flexible to form a network and extend the coverage area dynamically without infrastructure, so Ad-hoc network is envisioned as cornerstones of future generation networking technologies (B3G or 4(3). However, the dynamic network topology makes the communication cost not only the energy of source/destination nodes, but also the relay nodes. Another problem of the Ad-hoc network is it is hard to provide a stable and persistent quality of service (QoS), which is strongly required by the beyond 3rd generation (B3G) system. In this article, the authors establish a scenario that contains B3G cellular base station and Ad-hoc mobile nodes, and propose two algorithms minimum incremental rate algorithm and power feed-back rate allocation algorithm in multipath routing. The algorithms can maintain a constant total transmission rate and bit error ratio (BER) to provide the QoS guarantee and reach the minimum power consumption of the relay nodes by adjusting the rate of each path in the multipath routing.展开更多
Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for trad...Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for traditional and coded wireless networks without and with coding capability at intermediate nodes, respectively. Firstly, we formulate an interference-aware MDC multipath routing for traditional networks by employing a time-division link scheduling method to eliminate wireless interference, and ultimately obtain an optimal path selection corresponding to the minimum achievable distortion. Secondly, for coded networks, we evaluate practical wireless network coding (NC) in delivering descriptions of multiple unicast sessions. While NC increases maximum supporting flow rate of MDC descriptions in wireless networks, possible undecodability of NC mixed information is alleviated by MDC. To minimize achievable distortion, a proposed interference-and-coding-aware MDC multipath routing strikes a good balance between minimizing side effect of wireless interference avoidance and maximizing NC opportunity. Simulation results validate the effectiveness of the two proposed schemes.展开更多
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金Financial support for this study, provided by the National Natural Science Foundation of China (No.60674002) the Science and Technology Research of the Ministry of Railways of China (No. 2006x006-E), is gratefully acknowledged
文摘Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.
基金supported by the Young and Middle-aged Elitists' Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province under Grant No.T200902Natural Science Foundation of Hubei Province of China under Grant No.2010CDB05601Key Scientific Research Project of Hubei Education Department under Grants No.D20102205, Q20102202, Q20111610
文摘This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.
基金supported by the National Basic Research Program of China(973 Program)(2011CB302903)the Key Program of Natural Science for Universities of Jiangsu Province(10KJA510035)+2 种基金the Science and Technology Innovation Group Foundation of Jiangsu Province ("Qing and Lan" Project)the Postgraduate Innovation Project Foundation of Jiangsu Province(CX10B 194ZCX09B 152Z)
文摘Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.
基金Projects(2003CB314802) supported by the State Key Fundamental Research and Development Programof China project(90104001) supported by the National Natural Science Foundation of China
文摘In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.
文摘A multipath source self repair routing (MSSRR) algorithm for mobile ad hoc networks is proposed. By using multiple paths which can be repaired by themselves to transmit packets alternately, the network's load is balanced, the link state in the network can be checked in time, the number of the times the route discovery mechanism starts is decreased. If only one route which will be broken can be used to transmit the packets, the route discovery mechanism is restarted.The algorithm is implemented on the basis of dynamic source routing (DSR). The effect of MSSRR on lifetime of the access from the source to the destination and the overhead is discussed. Compared with the performance of DSR,it can be seen that the algorithm can improve the performance of the network obviously and the overhead almost does not increase if the average hop count is larger.
基金supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(Nos.61702315,61802092)+1 种基金the Applied Basic Research Plan of Shanxi Province(No.2201901D211168)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.
文摘A new multilayered inter satellite-high altitude platform (HAP) system routing algorithm is proposed,which is mainly based on multipath routing to ensure the network reliability.The proposed multipath routing scheme principally relies on splitting the traffic between different paths to make the best utilization of multiple routes.Linear programming is the main method used for multipath selection.The major constraints to the quality of service (QoS) (delay and link utilization) have been taken into account to meet the criteria of the advanced multimedia applications.Due to the effect of link utilization,the system encounters traffic flow oscillation between paths over time,which affects the system performance.Hence,to fix this issue,we propose a cognitive routing algorithm which reacts to the long-term changes of the traffic loads rather than short-term ones.The performance of the proposed routing techniques has been evaluated using appropriate simulation models and implemented by Matlab.
基金This work is supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(No.QCXM201910)the National Natural Science Foundation of China(No.61702315,No.61802092)+2 种基金the Scientific Research Setup Fund of Hainan University(No.KYQD(ZR)1837)the Key R&D program(international science and technology cooperation project)of Shanxi Province China(No.201903D421003)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802013).
文摘Loop free alternate(LFA)is a routing protection scheme that is currently deployed in commercial routers.However,LFA cannot handle all single network component failure scenarios in traditional networks.As Internet service providers have begun to deploy software defined network(SDN)technology,the Internet will be in a hybrid SDN network where traditional and SDN devices coexist for a long time.Therefore,this study aims to deploy the LFA scheme in hybrid SDN network architecture to handle all possible single network component failure scenarios.First,the deployment of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear programming(ILP)problem.Then,two greedy algorithms,namely,greedy algorithm for LFA based on hybrid SDN(GALFAHSDN)and improved greedy algorithm for LFA based on hybrid SDN(IGALFAHSDN),are proposed to solve the proposed problem.Finally,both algorithms are tested in the simulation environment and the real platform.Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single network component failure scenarios when only a small number of nodes are upgraded to SDN nodes.The path stretch of the two algorithms is less than 1.36.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1804803the National Natural Science Foundation of China under Grant 61872382the Research and Development Program in Key Areas of Guangdong Province under Grant No.2018B010113001。
文摘The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.
文摘In underground operation,primary consideration is safety.In recent decades,for minimizing accident and for preventing major economic losses and casualties,wireless sensors are used by various large mineral countries through early warning.The Improved DV-Hop Localization Algorithm(IDVHLA)is used in existing works for doing this.However,accurate anchor node detection is impossible in existing works with the malicious nodes presence,where there won’t be any accurate sharing of anchor node’s location information.In case of emergency situation,faster communication is a highly complex one.A technique calledModified Distance Vector Hop based Multipath Routing Protocol(MDVHMRP)is introduced in this proposed research work for resolving this.In this work,to detect anchor node position,a Modified Distance Vector Hop technique is introduced.This research work considers time taken and session time for computing neighbour node’s presence in addition to hop count values.Malicious nodes presence can be avoided by considering session time in neighbour node presence detection.The alert message are send by people in emergency crisis to sever in initial condition.Then Dynamic Source Routing(DSR)routing protocol is used for doing immediate route path selection.In case of route path failure,for ensuring uninterrupted communication and faster communication,this work introduces amulti path routing.Themodified distance vector hop technique is used for predicting anchor node location information and predicted information will be transmitted.In NS2 simulation environment,overall evaluation of this research work is carried out.When compared with available techniques,localization accuracy is enhanced by proposed technique as proven in experimental results.
基金supported by King Saud Universitythe Deanship of Scientific Research at King Saud University for funding this work through research Group No.(RG-1439-053).
文摘The vehicle ad hoc network that has emerged in recent years was originally a branch of the mobile ad hoc network.With the drafting and gradual establishment of standards such as IEEE802.11p and IEEE1609,the vehicle ad hoc network has gradually become independent of the mobile ad hoc network.The Internet of Vehicles(Vehicular Ad Hoc Network,VANET)is a vehicle-mounted network that comprises vehicles and roadside basic units.This multi-hop hybrid wireless network is based on a vehicle-mounted self-organizing network.As compared to other wireless networks,such as mobile ad hoc networks,wireless sensor networks,wireless mesh networks,etc.,the Internet of Vehicles offers benefits such as a large network scale,limited network topology,and predictability of node movement.The paper elaborates on the Traffic Orchestration(TO)problems in the Software-Defined Vehicular Networks(SDVN).A succinct examination of the Software-defined networks(SDN)is provided along with the growing relevance of TO in SDVN.Considering the technology features of SDN,a modified TO method is proposed,which makes it possible to reduce time complexity in terms of a group of path creation while simultaneously reducing the time needed for path reconfiguration.A criterion for path choosing is proposed and justified,which makes it possible to optimize the load of transport network channels.Summing up,this paper justifies using multipath routing for TO.
文摘Mobile Ad Hoc Network(MANET)is a group of node that would interrelate among each other through onemulti-hop wireless link,wherein the nodes were able to move in response to sudden modifications.The objective of MANET routing protocol is to quantify the route and compute the best path,but there exists a major decrease in energy efficiency,difficulty in hop selection,cost estimation,and efficient load-balancing.In this paper,a novel least common multipath-based routing has been proposed.Multipath routing is used to find a multipath route from source and destination.Load balancing is of primary importance in the mobile ad-hoc networks,due to limited bandwidth among the nodes and the initiator of the load routing discovery phase in the multipath routing protocol.Fuzzy logic for load balancing multipath routing in MANETs is proposed,which ensures the data packets are sent through a path with the variance of binary sets to predict the original transformation of the data to be received in the system.The main objective of the proposed system is to reduce the routing time of data packets and avoid the traffic based on multipath source and destination.The experimental results have to verify 96.7%efficiency in balancing the load.
文摘In recent years, Voice over IP (VoIP) has impacted global telecommunications and networking tremendously. Traffic engineering and Quality of Service (QoS) guarantees for VoIP services pose a challenge for network researchers and designers. The repeated use of Internet Protocol shortest path towards the same destination may lead to unbalanced traffic situations and degraded network performance. Therefore, load balancing and link utilization become the critical functions in Internet Protocol routing for providing Quality of Service assurance for VoIP application. The aim of this work is to employ Multiprotocol Label Switching Network as a traffic engineering tool to enhance the QoS for VoIP applications. To achieve this, an effective Multiprotocol Label Switching Network load balancing architecture is developed that classifies the Internet traffic flows, routes the flows into multiple paths. Flow arrival rate, packet loss rate and delay are measured and taken as the input parameters and compared with the threshold values to identify the VoIP flow. Network load status is calculated by estimating the average buffer occupancy value and multipath routing is triggered when the network load is high to enhance the QoS. The investigated performance measures like throughput, delay and packet loss are reported to show the efficiency of the proposed technique for effective VoIP flows.
文摘In this paper, a QoS multipath source routing protocol (QoS-MSR) is proposedfor ad hoc networks. It can collect QoS information through route discovery mechanism of multipathsource routing (MSR) and establish QoS route with reserved bandwidth. In order to reserve bandwidthefficiently, a bandwidth reservation approach called the multipath bandwidth splitting reservation(MBSR) is presented, under which the overall bandwidth request is split into several smallerbandwidth requests among multiple paths. In simulations, the authors introduce Insignia, an in-bindsignaling system that supports QoS in ad hoc networks, and extend it to multipath Insignia(M-Insignia) with QoS-MSR and MBSR. The results show that QoS-MSR routing protocol with the MBSRalgorithm can improve the call admission ratio of QoS traffic, the packet delivery ratio, and theend-to-end delay of both best-effort traffic and QoS traffic. Therefore, QoS-MSR with MBSR is anefficient mechanism that supports QoS for ad hoc networks.
基金supported by the International Doctoral Fellowship (IDF) provided by the Universiti Teknologi Malaysia (UTM)
文摘The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applications. However, the performance of these protocols is highly affected by the characteristics of the wireless channel and may be even inferior to the performance of single-path approaches. Specifically, when multiple adjacent paths are being used concurrently, the broadcast nature of wireless channels results in inter-path interference which significantly degrades end-to-end throughput. In this paper, we propose a Low- Interference Energy-efficient Multipath Routing protocol (LIEMRO) to improve the QoS requirements of event-driven applications. In addition, in order to optimize resource utilization over the established paths, LIEMRO employs a quality-based load balancing algorithm to regulate the amount of traffic injected into the paths. The performance gain of LIEMRO compared to the ETX-based single-path routing protocol is 85%, 80%, and 25% in terms of data delivery ratio, end-to-end throughput, and network lifetime, respectively. Furthermore, the end-to-end latency is improved more than 60%.
基金the National Natural Science Foundation of China (60573141 and 60773041)Hi-Tech Research and Development Program of China (2006AA01Z201, 2006AA01Z439, 2007AA01Z478)+5 种基金the Natural Science Foundation of Jiangsu Province (BK2005146)High Technology Research Programme of Jiangsu Provinc (BG2006001)High Technology Research Programme of Nanjing (2007RZ127)Foundation of National Laboratory for Modern Communications (9140C1101010603)Key Laboratory of Information Technology processing of Jiangsu Province (kjs06006)The Young Teachers Program of Anhui Province (2006jql044)
文摘Multipath routing mechanism is vital for reliable packet delivery, load balance, and flexibility in the open network because its topology is dynamic and the nodes have limited capability. This article proposes a new multipath switch approach based on traffic prediction according to some characteristics of open networks. We use wavelet neural network (WNN) to predict the node traffic because the method has not only good approximation property of wavelet, but also self-learning adaptive quality of neural network. When the traffic prediction indicates that the primary path is a failure, the alternate path will be occupied promptly according to the switch strategy, which can save time for the switch in advance The simulation results show that the presented traffic prediction model has better prediction accuracy; and the approach based on the above model can balance network load, prolong network lifetime, and decrease the overall energy consumption of the network.
基金supported by the National Natural Science Foundation of China (No. 60772055)the Liaoning Education Foundation (No. 2008S159,LS2010115)
文摘Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide high-quality monitoring information, many WSN applications require high-rate data transmission. Multipath routing protocols are often used to increase the network transmission rate and throughput. Although large-scale WSN can be supported by high bandwidth backbone network, the WSN remains the bottleneck due to resource constraints of wireless sensors and the effects of wireless interference. In this paper, we propose a multipath energy-efficient routing protocol for WSN that considers wireless interference. In the proposed routing protocol, nodes in the interference zone of the discovered path are marked and not allowed to take part in the subsequent routing process. In this way, the quality of wireless communication is improved because the effects of wireless interference can be reduced as much as possible. The network load is distributed on multiple paths instead of concentrating on only one path, and node energy cost is more balanced for the entire wireless network. The routing protocol is simulated in NS2 software. Simulation result shows that the proposed routing protocol achieves lower energy cost and longer network lifetime than that in the literature.
文摘Wireless mobile Ad-hoc network is a special network that all nodes can serf-organize and work together. It is flexible to form a network and extend the coverage area dynamically without infrastructure, so Ad-hoc network is envisioned as cornerstones of future generation networking technologies (B3G or 4(3). However, the dynamic network topology makes the communication cost not only the energy of source/destination nodes, but also the relay nodes. Another problem of the Ad-hoc network is it is hard to provide a stable and persistent quality of service (QoS), which is strongly required by the beyond 3rd generation (B3G) system. In this article, the authors establish a scenario that contains B3G cellular base station and Ad-hoc mobile nodes, and propose two algorithms minimum incremental rate algorithm and power feed-back rate allocation algorithm in multipath routing. The algorithms can maintain a constant total transmission rate and bit error ratio (BER) to provide the QoS guarantee and reach the minimum power consumption of the relay nodes by adjusting the rate of each path in the multipath routing.
基金partially supported by the Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao of the National Natural Science Foundation of China under Grant No.61228102
文摘Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for traditional and coded wireless networks without and with coding capability at intermediate nodes, respectively. Firstly, we formulate an interference-aware MDC multipath routing for traditional networks by employing a time-division link scheduling method to eliminate wireless interference, and ultimately obtain an optimal path selection corresponding to the minimum achievable distortion. Secondly, for coded networks, we evaluate practical wireless network coding (NC) in delivering descriptions of multiple unicast sessions. While NC increases maximum supporting flow rate of MDC descriptions in wireless networks, possible undecodability of NC mixed information is alleviated by MDC. To minimize achievable distortion, a proposed interference-and-coding-aware MDC multipath routing strikes a good balance between minimizing side effect of wireless interference avoidance and maximizing NC opportunity. Simulation results validate the effectiveness of the two proposed schemes.