期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Performance Prediction of the Helico-axial Multiphase Pump 被引量:1
1
作者 Zhu Hongwu Zhou Dan Chen Luo 《Petroleum Science》 SCIE CAS CSCD 2005年第3期20-23,共4页
A modified one-dimensional model is developed for prediction of multiphase pump performance. Taken into account in the model are the gas compressibility, the slip speed gap between two phases and the flow cross-sectio... A modified one-dimensional model is developed for prediction of multiphase pump performance. Taken into account in the model are the gas compressibility, the slip speed gap between two phases and the flow cross-sectional depth gradient in the flow line. By using this model, we can select appropriate geometrical parameters of the impellers and guide vanes, and thus higher-pressure boost is obtained but phase separation does not occur. Accordingly, the design method can be optimized. The drag coefficients are analyzed for different flows. Results predicted by the modified model are compared with a series of experimental data and found in good agreement. This model provides a convenient and economical tool for engineering design over a traditional one. 展开更多
关键词 Helico-axial multiphase pump gas-liquid phase separation pdrformance prediction drag coefficient
下载PDF
Investigation on the performance of a helico-axial multiphase pump under slug flow
2
作者 Jia-Xiang Zhang Jin-Ya Zhang +2 位作者 Ye Zhou Zi-Yi-Yi Cheng Guang-Da Cao 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1812-1824,共13页
The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-d... The helico-axial multiphase pump is often used for gas-liquid mixture transportation in offshore oilfields,and slug flow is the main reason for the unstable operation of the pump.Aimed for slug flow condition,a self-designed three-stage multiphase pump is set to the object to perform unsteady simulations and fluid-structure interaction calculations,and the inlet gas void fraction(IGVF)is set from 20%to 80%.The results show that affected by the flow from the slug,the gas-liquid two-phase flow pattern in the multiphase pump changes sharply,resulting in severe fluctuations in the differential pressure,spindle torque and deformation of the multiphase pump.The gas-phase enters the first-impeller along the suction blade surface when affected by Taylor bubbles,while the second and third-stage impellers gas-phases are in the form of small air masses flow into the impeller along the pressure blade surface.The deformation trend of impeller torque,differential pressure and the main pump spindle is similar to that of trigonometric function,while the fluctuation of torque is more intense,and the shape variable of spindle increases with the inflow of liquid plug,and the maximum deformation amount increases by10.9%at high GVF relative to IGVF. 展开更多
关键词 multiphase pump Slug flow Gas void fraction(GVF) Hydraulic performance Fluid-structure interaction
下载PDF
Research on bubble trajectory and flow structure in helical-axial multiphase pump 被引量:1
3
作者 Hui Quan Chen-xi Sun +4 位作者 Kai Song Ya-nan Li Xiao-yi Liu Xue-ling Yang Liang Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期533-548,共16页
The oil-gas two-phase hybrid transportation technology is one of the innovative technology directions for the exploitation and transportation of marginal and deep ocean oilfields.The helical-axial multiphase pump is a... The oil-gas two-phase hybrid transportation technology is one of the innovative technology directions for the exploitation and transportation of marginal and deep ocean oilfields.The helical-axial multiphase pump is a key equipment for oil and gas extraction.At this stage,most of the research on this kind of pump focuses on the improvement of the structure and conveying performance.However,because of insufficient understanding of the flow behavior and mechanism of bubbles,it is easy to cause the gas-liquid separation.In this paper,the numerical simulation and test are combined to explore the changes in the bubble trajectory and flow structure of the helical-axial multiphase pump.The results shown that when the speed is lower than 1200 r/min,the bubble reaches the maximum volume at 1/2 of the midline of the impeller blade and it contact with the pressure surface,broken to the suction surface.When the rotation speed is higher than 1450 r/min,the number of bubbles in the impeller increases and the size decreases.The backflow occurs in the tip clearance and strength increases continuously.The research results have important significance for the theoretical design and engineering application of the helical-axial multiphase pump. 展开更多
关键词 Helical-axial multiphase pump gas-liquid two-phase flow visualization experiment bubble trajectory flow structure
原文传递
Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis 被引量:8
4
作者 张金亚 蔡淑杰 +2 位作者 李泳江 周鑫 张永学 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第6期1023-1034,共12页
A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The... A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible. 展开更多
关键词 Optimization design multiphase pump genetic algorithm boundary vortex flux quasi-3D hydraulic design (Q3DHD)
原文传递
Pressure fluctuation characteristics in the pressurization unit of a multiphase pump
5
作者 Guang-tai Shi Zong-ku Liu +2 位作者 Ye-xiang Xiao Xue-lin Tang Xiao-bing Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第6期1230-1241,共12页
The tip clearance induces the tip leakage vortex(TLV),which has a great impact on the pressure fluctuation characteristics of the multiphase pump.To investigate the effect of the tip clearance on the pressure fluctuat... The tip clearance induces the tip leakage vortex(TLV),which has a great impact on the pressure fluctuation characteristics of the multiphase pump.To investigate the effect of the tip clearance on the pressure fluctuations,based on the Reynolds time-averaged Navier-Stokes equation and the shear stress transfer(SST)k-ωturbulence model,the three-dimensional turbulent flow in the pump is numerically simulated for different tip clearances in the water and gas-liquid two-phase cases by using the ANSYS CFX software and the results are verified with experimental data.It is shown the greater pressure fluctuation intensity corresponds with the TLV both in the water and gas-liquid two-phase cases.In the meantime,the location of the maximum pressure fluctuation intensity is related to the tip clearance size.In addition,for different tip clearances,the pressure fluctuation intensity with the rotor and stator interaction(RSI)is relatively larger.The difference is that when R_(tc)=1.5 mm,the pressure fluctuation intensity near the impeller middle point is also relatively larger.On the whole,the pressure fluctuation intensity in the gas-liquid two-phase case is larger than that in the water case.Furthermore,the gas causes the frequency of the high-amplitude pressure fluctuation in the impeller and the diffuser to be shifted from 7 f_(n)(f_(n) denotes impeller rotational frequency)and 3 f_(n) to the low-frequency region,respectively.The pressure fluctuations at the blade-passing frequency(BPF)and the multiple BPFs gradually disappear.Meanwhile,the amplitude at the dominant frequency in the gas-liquid two-phase case is at least one order of magnitude smaller than that in the water case,and the peak-to-peak value of the pressure fluctuation is also much smaller. 展开更多
关键词 multiphase pump gas void faction pressure fluctuation intensity tip leakage vortex(TLV) numerical simulation
原文传递
The 3D Modeling of Blades of Multiphase Flow Helico-Axial Pump's Rotor Based on Solidworks 被引量:8
6
作者 LI Zeng-liang ZHI Rui-ping ZHAO Chuan-wei WU Hai-yan GUAN Yu-gang 《Computer Aided Drafting,Design and Manufacturing》 2011年第2期1-6,共6页
The structure of multiphase flow helico-axial pump's rotor and how to model the rotor, especially the blades of the rotor, based on the Solidworks software. More important, the principle of the blade design is mainly... The structure of multiphase flow helico-axial pump's rotor and how to model the rotor, especially the blades of the rotor, based on the Solidworks software. More important, the principle of the blade design is mainly introduced. Under the guide of the principle, the 3D coordinates of the blade data points can be got by matlab programming. In the paper, the design step and the modeling step are particularly described through a concrete example. 展开更多
关键词 BLADE multiphase flow helico-axial pump ROTOR SOLIDWORKS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部