Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numer...Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numerous membranes can dynamically control liquid-phase fluids transport via external stimuli, the transport and separation of gas-phase fluids remains a challenge. Here, we show a temperature-regulation liquid gating membrane that allows in-situ dynamically controllable gas/liquid transfer and multiphase separation by integrating a thermo-wettability responsive porous membrane with functional gating liquid. Experiments and theoretical analysis have demonstrated the temperature-regulation mechanism of this liquid gating system, which is based on thermo-responsive changes of porous membrane surface polarity, leading to changes in affinity between the porous membrane and the gating liquid. In addition, the sandwich configuration with dense Au-coated surfaces and heterogeneous internal components by a bistable interface design enables the liquid gating system to enhance response sensitivity and maintain working stability. This temperature-regulation gas/liquid transfer strategy expands the application range of liquid gating membranes,which are promising in environmental governance, water treatment and multiphase separation.展开更多
Multiphase CFD is used to design a compact fluidized bed sorber for CO2 removal from flue gases using sodium or potassium carbonate pellets. The sorber sizes are much smaller than commercial amine absorbers and smalle...Multiphase CFD is used to design a compact fluidized bed sorber for CO2 removal from flue gases using sodium or potassium carbonate pellets. The sorber sizes are much smaller than commercial amine absorbers and smaller than other proposed dry adsorbers. The size reduction is due to the elimination of dilute regions that cause bypassing. With proper solids feeding we eliminated the usual core-annular regime found in circulating fluidized beds.展开更多
In the petrochemical industry,separation of oil from water is a very important process.Wells produce mixtures of gas,oil,and water which undergo a primary stage of separation inside horizontal gravity separators.The p...In the petrochemical industry,separation of oil from water is a very important process.Wells produce mixtures of gas,oil,and water which undergo a primary stage of separation inside horizontal gravity separators.The performance of these vessels is evaluated by measuring mean residence time(MRT)and residence time distribution(RTD).Although many researchers studied flow characteristics in horizontal separators,limited number of articles exist that discuss separator MRT and RTD with varying water-cuts.In this article,the authors study an experiment using a horizontal gravity separator by previous researchers and perform computational fluid dynamics(CFD)simulations on the same geometry under similar conditions.The simulation results show qualitative agreement with the experiments by previous researchers.As shown by experiments before,CFD results showed that MRT of the organic phase increased with increase in water-cut.In addition,the RTD characteristics show very similar trends between CFD and experimental results.展开更多
基金supported by the National Natural Science Foundation of China (52025132, 21621091, 22021001, 22121001, 22275207 and T2241022)the National Science Foundation of Fujian Province of China (2022J02059)+3 种基金the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (KFKT202221)the 111 Project (B17027, B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (RD2022070601)the Tencent Foundation (The XPLORER PRIZE)。
文摘Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numerous membranes can dynamically control liquid-phase fluids transport via external stimuli, the transport and separation of gas-phase fluids remains a challenge. Here, we show a temperature-regulation liquid gating membrane that allows in-situ dynamically controllable gas/liquid transfer and multiphase separation by integrating a thermo-wettability responsive porous membrane with functional gating liquid. Experiments and theoretical analysis have demonstrated the temperature-regulation mechanism of this liquid gating system, which is based on thermo-responsive changes of porous membrane surface polarity, leading to changes in affinity between the porous membrane and the gating liquid. In addition, the sandwich configuration with dense Au-coated surfaces and heterogeneous internal components by a bistable interface design enables the liquid gating system to enhance response sensitivity and maintain working stability. This temperature-regulation gas/liquid transfer strategy expands the application range of liquid gating membranes,which are promising in environmental governance, water treatment and multiphase separation.
基金the Thailand Research Fund (TRF) under the Research Career Development Project
文摘Multiphase CFD is used to design a compact fluidized bed sorber for CO2 removal from flue gases using sodium or potassium carbonate pellets. The sorber sizes are much smaller than commercial amine absorbers and smaller than other proposed dry adsorbers. The size reduction is due to the elimination of dilute regions that cause bypassing. With proper solids feeding we eliminated the usual core-annular regime found in circulating fluidized beds.
文摘In the petrochemical industry,separation of oil from water is a very important process.Wells produce mixtures of gas,oil,and water which undergo a primary stage of separation inside horizontal gravity separators.The performance of these vessels is evaluated by measuring mean residence time(MRT)and residence time distribution(RTD).Although many researchers studied flow characteristics in horizontal separators,limited number of articles exist that discuss separator MRT and RTD with varying water-cuts.In this article,the authors study an experiment using a horizontal gravity separator by previous researchers and perform computational fluid dynamics(CFD)simulations on the same geometry under similar conditions.The simulation results show qualitative agreement with the experiments by previous researchers.As shown by experiments before,CFD results showed that MRT of the organic phase increased with increase in water-cut.In addition,the RTD characteristics show very similar trends between CFD and experimental results.