Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an i...Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an individual ESS to a single customer is still a luxury.Thus,this paper aims to investigate whether the Shared-ESS can assist energy savings for multiple users through Peer-to-Peer(P2P)trading.Moreover,with the increasing number of market participants in the integrated energy system(IES),a benefit allocation scheme is necessary,ensuring reasonable benefits for every user in the network.Using the multiplayer cooperative game model,the nucleolus and the Shapley value methods are adopted to evaluate the benefit allocation between multiple users.Numerical analyses based on multiple micro-energy grids are performed,so as to assess the performance of the Shared-ESS and the proposed benefit allocation scheme.The results show that the micro-energy grid cluster can save as much as 38.15%of the total energy cost with Shared-ESS being equipped.The following conclusions can be drawn:the Shared-ESS can significantly reduce the operating costs of the micro-energy grid operator,promote the consumption of renewable energy,and play the role of peak-shaving and valley-filling during different energy usage periods.In addition,it is reflected that the multiplayer cooperative game model is effective in revealing the interaction between the micro-energy grids,which makes the distribution results more reasonable.展开更多
基金This work was supported by the Science and Technology Project of State Grid Corporation of China“Research on Key Technologies of Multi-energy Flow Simulation and Energy Management of Integrated Energy System”under the grant number 5400-201999493A-0-0-00,2019.09-2021.12。
文摘Following the unprecedented generation of renewable energy,Energy Storage Systems(ESSs)have become essential for facilitating renewable consumption and maintaining reliability in energy networks.However,providing an individual ESS to a single customer is still a luxury.Thus,this paper aims to investigate whether the Shared-ESS can assist energy savings for multiple users through Peer-to-Peer(P2P)trading.Moreover,with the increasing number of market participants in the integrated energy system(IES),a benefit allocation scheme is necessary,ensuring reasonable benefits for every user in the network.Using the multiplayer cooperative game model,the nucleolus and the Shapley value methods are adopted to evaluate the benefit allocation between multiple users.Numerical analyses based on multiple micro-energy grids are performed,so as to assess the performance of the Shared-ESS and the proposed benefit allocation scheme.The results show that the micro-energy grid cluster can save as much as 38.15%of the total energy cost with Shared-ESS being equipped.The following conclusions can be drawn:the Shared-ESS can significantly reduce the operating costs of the micro-energy grid operator,promote the consumption of renewable energy,and play the role of peak-shaving and valley-filling during different energy usage periods.In addition,it is reflected that the multiplayer cooperative game model is effective in revealing the interaction between the micro-energy grids,which makes the distribution results more reasonable.