After tempering treatment at different conditions, the tempering stability of Fe-base hardfacing layer containing RE and multiple alloying was investigated. The results show that after heat preservation at 560 ℃ and ...After tempering treatment at different conditions, the tempering stability of Fe-base hardfacing layer containing RE and multiple alloying was investigated. The results show that after heat preservation at 560 ℃ and tempering for 4 h the hardness value of Fe-base hardfacing layer containing RE and multiple alloying can reach HRC57; By repeatedly heating circle 700 ℃17 ℃ for 150 times, the hardness value of Fe-base hardfacing layer can reach HRC43, tempering stability is higher and causes the secondary hardening phenomenon. Reasons for higher tempering stability of Fe-base hardfacing layer were analyzed by means of metallographic, XRD, TEM and EDS.展开更多
The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carb...The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carbides with large size are formed from original short rhabdoid carbides existing in cast, those with small size directly nucleate in the matrix. Carbides with the size between the above are formed from precipitation induced by hot deformation. The bigger the deformation is, the larger the number of microsized granular carbides is. The mechanisms of nucleation and growth of granular carbides and the function of RE were discussed.展开更多
As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In rec...As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.展开更多
文摘After tempering treatment at different conditions, the tempering stability of Fe-base hardfacing layer containing RE and multiple alloying was investigated. The results show that after heat preservation at 560 ℃ and tempering for 4 h the hardness value of Fe-base hardfacing layer containing RE and multiple alloying can reach HRC57; By repeatedly heating circle 700 ℃17 ℃ for 150 times, the hardness value of Fe-base hardfacing layer can reach HRC43, tempering stability is higher and causes the secondary hardening phenomenon. Reasons for higher tempering stability of Fe-base hardfacing layer were analyzed by means of metallographic, XRD, TEM and EDS.
文摘The granular carbides formed from hot deformation in multiple alloying wear resistant cast iron were studied through the observation by means of optical microscope, SEM and TEM. The experimental results show that carbides with large size are formed from original short rhabdoid carbides existing in cast, those with small size directly nucleate in the matrix. Carbides with the size between the above are formed from precipitation induced by hot deformation. The bigger the deformation is, the larger the number of microsized granular carbides is. The mechanisms of nucleation and growth of granular carbides and the function of RE were discussed.
基金supported by the National Natural Science Foundation of China (51471025 and 51671020)
文摘As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.