期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Semi-analytical solution for internal forces of tunnel lining with multiple longitudinal cracks
1
作者 Gan Wang Qian Fang +1 位作者 Jianming Du Jun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2013-2024,共12页
Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the inte... Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated. 展开更多
关键词 Semi-analytical method multiple cracks Tunnel lining Structural analysis
下载PDF
Peridynamic Study on Fracture Mode and Crack Propagation Path of a Plate with Multiple Cracks Subjected to Uniaxial Tension
2
作者 Zeyuan Zhou Ming Yu +1 位作者 Xinfeng Wang Zaixing Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2593-2620,共28页
How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation t... How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation that can spontaneously predict the crack nucleation,branch and propagation in materials and structures through a meshfree discrete technique.In this paper,the peridynamic motion equation with boundary traction is improved by simplifying the boundary transfer functions.We calculate the critical cracking load and the fracture angles of the plate with multiple cracks under uniaxial tension.The results are consistent with those predicted by classical fracture mechanics.The fracture mode and crack propagation path are also determined.The calculation shows that the brittle fracture process of the plate with multiple cracks can be conveniently and correctly simulated by the peridynamic motion equation with boundary conditions. 展开更多
关键词 PERIDYNAMICS multiple cracks brittle fracture crack propagation
下载PDF
Three-Steps-Meshing Based Multiple Crack Identification for Structures and Its Experimental Studies 被引量:3
3
作者 LI Bing CHEN Xuefeng HE Zhengjia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期400-405,共6页
Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A th... Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures. 展开更多
关键词 multiple cracks structure three steps meshing
下载PDF
Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation 被引量:1
4
作者 郭钊 马杭 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期173-179,共7页
The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of... The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach. 展开更多
关键词 crack opening displacement (COD) multiple cracks stress intensity factor boundary integral equation ITERATION
下载PDF
Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane 被引量:1
5
作者 泮世东 周振功 吴林志 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1201-1224,共24页
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This pr... The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks. 展开更多
关键词 functionally graded piezoelectric/piezomagnetic material multiple parallel symmetric crack crack shielding effect solid mechanics
下载PDF
Numerical Comparison Research on the Solution of Stress Intensity Factors of Multiple Crack Problems
6
作者 Guo Zhao 《Advances in Pure Mathematics》 2020年第12期706-727,共22页
A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) bound... A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) boundary integral equations in this paper. The eigen COD is defined as a crack in an infinite domain under fictitious traction acting on the crack surface. Respect to the computational accuracies and efficiencies, the multiple crack problems in finite and infinite plates are solved and compared numerically using three different kinds of boundary integral equations (BIEs): 1) the dual BIEs require crack surface discretization;2) the BIEs with numerical Green’s functions (NGF) without crack surface discretization, but have to solve a complementary matrix;3) the eigen crack opening displacement (COD) BIEs in the present paper. With the concept of eigen COD, the multiple crack problems can be solved by using a conventional displacement discontinuity boundary integral equation in an iterative fashion with a small size of system matrix as that in the NGF approach, but without troubles to determine the complementary matrix. Solution of the stress intensity factors of multiple crack problems is solved and compared in some numerical examples using the above three computational algorithms. Numerical results clearly demonstrate the numerical models of eigen COD BIEs have much higher efficiency, providing a newly numerical technique for multiple crack problems. Not only the accuracy and efficiency of computation can be guaranteed, but also the overall properties and local details can be obtained. In conclusion, the numerical models of eigen COD BIEs realize the simulations for multiple crack problems with large quantity of cracks. 展开更多
关键词 multiple Crack Problems Boundary Integral Equations Eigen Crack Opening Displacements Eshelby Matrix Stress Intensity Factors
下载PDF
Tensile and Flexural Properties of Ultra High Toughness Cemontious Composite 被引量:22
7
作者 李贺东 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期677-683,共7页
The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows... The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows extremely remarkable pseudo strain hardening behavior, saturated multiple cracking and ultra high ultimate strain capacity above 4% under uniaxial loading. Also, the corresponding crack widths are controlled under 50 um even at 56 days age. In the third point bending tests on thin plate specimens, the composite shows ultra high flexural ductility and multiple cracking on the tension surface. The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC. SEM observation on fracture surfaces provides indirect evidence of optimal design for the composite. 展开更多
关键词 pseudo strain hardening cementitious composite multiple cracking DUCTILITY SEM
下载PDF
Mechanics Behavior of Ultra High Toughness Cementitious Composites after Freezing and Thawing 被引量:9
8
作者 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期509-514,共6页
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin... Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions. 展开更多
关键词 ultra high toughness cementitious composites cyclic freezing and thawing flexural strength multiple cracking flexural toughness
下载PDF
Preparation of Self-compacting Ultra-high Toughness Cementitious Composite
9
作者 张秀芳 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期754-761,共8页
A self-compacting ultra-high toughness cementitious composite (UHTCC) reinforced by discontinuous short polyvinyl alcohol (PVA) fibers, which exhibits self-compacting performance in the fresh state and strain-hard... A self-compacting ultra-high toughness cementitious composite (UHTCC) reinforced by discontinuous short polyvinyl alcohol (PVA) fibers, which exhibits self-compacting performance in the fresh state and strain-hardening and multiple cracking behavior in the hardened state, was developed through controlling flow properties of fresh mortar matrix at constant ingredients concentrations determined by micromechanical design and ensuring uniform fibers dispersion. The superplasticizer was utilized to adjust its flow properties in the fresh state. A series of flow tests, including deformability test, flow rate test, and self-placing test, were conducted to characterize and quantify the fluidity performance of fresh mortar matrix and self-compactability of fresh UHTCC. It is revealed that the utilization of superplasticizer is efficient in producing the fresh mortar matrix with desirable fluidity and the resulting self-compacting UHTCC. In addition, results of four point bending tests on the developed self-compacting UHTCC confirm the insensitivity of mechanical performance of self-compacting UHTCC to the presence of external vibrations as well as the flexural characteristics of deformation hardening and multiple cracking. 展开更多
关键词 SELF-COMPACTING ultra-high toughness cementitious composite (UHTCC) flow property STRAIN-HARDENING multiple cracking
下载PDF
A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material 被引量:3
10
作者 Fei Yan Xia-Ting Feng +1 位作者 Peng-Zhi Pan Shao-Jun Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期73-83,共11页
A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, an... A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Grif- fith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle mate- rial is proposed. The method treats the junction and coales- cence of multiple cracks, and junction criterion and coales- cence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set ap- proximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above the- ories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems. 展开更多
关键词 Continuous-discontinuous cellular automatonmethod multiple crack growth Discontinuous cellular au-tomaton Junction criterion - Coalescence criterion
下载PDF
Investigating fatigue behavior of gear components with the acoustic emission technique 被引量:1
11
作者 石鹏飞 黄杰 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期190-195,共6页
A novel method is presented to evaluate the complicated fatigue behavior of gears made of20Cr2Ni4 A.Fatigue tests are conducted in a high-frequency push-pull fatigue tester,and acoustic emission(AE)technique is used... A novel method is presented to evaluate the complicated fatigue behavior of gears made of20Cr2Ni4 A.Fatigue tests are conducted in a high-frequency push-pull fatigue tester,and acoustic emission(AE)technique is used to acquire metal fatigue signals.After analyzing large number of AE frequency spectrum,we find that:the crack extension can be expressed as the energy of specific frequency band,which is abbreviated as F-energy.To further validate the fatigue behavior,some correlation analysis is applied between F-energy and some AE parameters.Experimental results show that there is significant correlation among the Fenergy,root mean square(RMS),relative energy,and hits.The findings can be used to validate the effectiveness of the F-energy in predicting fatigue crack propagation and remaining life for parts in-service.F-energy,as a new AE parameter,is first put forward in the area of fatigue crack growth. 展开更多
关键词 acoustic emission fatigue crack growth multiple cracks life prediction damage accumulation
下载PDF
MULTIPLE PARALLEL SYMMETRIC PERMEABLE MODEL-Ⅲ CRACKS IN A PIEZOELECTRIC/PIEZOMAGNETIC COMPOSITE MATERIAL PLANE 被引量:2
12
作者 Zhengong Zhou Peiwei Zhang Linzhi Wu 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第4期336-352,共17页
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt... In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials. 展开更多
关键词 piezoelectric/piezomagnetic composites multiple parallel symmetric cracks crack shielding effect mechanics of solids
原文传递
SOLUTION OF MULTIPLE CRACKS IN A FINITE PLATE OF AN ELASTIC ISOTROPIC MATERIAL WITH THE DISTRIBUTED DISLOCATION METHOD 被引量:1
13
作者 Jiong Zhang Zhan Qu +2 位作者 Qiqing Huang Lechun Xie Cenbo Xiong 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第3期276-283,共8页
This paper presents a numerical solution to model multiple cracks in a finite plate of an elastic isotropic material. Both the boundaries and the cracks are modeled by distributed dislocations. This method results in ... This paper presents a numerical solution to model multiple cracks in a finite plate of an elastic isotropic material. Both the boundaries and the cracks are modeled by distributed dislocations. This method results in a system of singular integral equations with Cauchy kernels which can be solved by Gauss-Chebyshev quadrature method. Four examples are provided to assess the capability of this method. 展开更多
关键词 distributed dislocation multiple cracks finite plate
原文传递
ELASTODYNAMIC ANALYSIS OF A FUNCTIONALLY GRADED HALF-PLANE WITH MULTIPLE SUB-SURFACE CRACKS
14
作者 Rasul Bagheri Mojtaba Ayatollahi Alibakhsh Kasaeian 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第1期90-99,共10页
The stress fields are obtained for a functionally graded half-plane containing a Volterra screw dislocation.The elastic shear modulus of the medium is considered to vary ex-ponentially.The dislocation solution is util... The stress fields are obtained for a functionally graded half-plane containing a Volterra screw dislocation.The elastic shear modulus of the medium is considered to vary ex-ponentially.The dislocation solution is utilized to formulate integral equations for the half-plane weakened by multiple smooth cracks under anti-plane deformation.The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically.Several examples are solved and the stress intensity factors are obtained. 展开更多
关键词 functionally graded materials HALF-PLANE multiple cracks screw dislocation
原文传递
Interacting Stress Intensity Factors of Multiple Elliptical-Holes and Cracks Under Far-Field and Arbitrary Surface Stresses
15
作者 Wei Yi Qiuhua Rao +3 位作者 Wei Zhu Qingqing Shen Zhuo Li Wenbo Ma 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期125-154,共30页
Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground ro... Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground rock engineering,e.g.,buried tunnels,deep mining,geothermal and shale oil/gas exploitation by hydraulic fracturing technology,where both geo-stresses and surface stresses are applied on buried tunnels,horizontal wells and natural cracks.However,current literatures are focused mainly on study of interacting SIFs of multiple elliptical-holes(or circularholes)and cracks only under far-field stresses without consideration of arbitrary surface stresses.Recently,our group has proposed a new integral method to calculate interacting SIFs of multiple circular-holes and cracks subjected to far-filed and surface stresses.This new method will be developed to study the problem of multiple elliptical-hole and cracks subjected to both far-field and surface stresses.In this study,based on Cauchy integral theorem,the exact fundamental stress solutions of single elliptical-hole under arbitrarily concentrated surface normal and shear forces are derived to establish new integral equation formulations for calculating interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.The new method is proved to be valid by comparing our results of interacting SIFs with those obtained by Green’s function method,displacement discontinuity method,singular integral equation method,pseudo-dislocations method and finite element method.Computational examples of one elliptical-hole and one crack in an infinite elastic body are given to analyze influence of loads and geometries on interacting SIFs.Research results show that whenσ_(xx)^(∞)≥σ^(yy′)^(∞),there appears a neutral crack orientation angle b0(without elliptical-hole’s effect).Increasing s¥xx/s¥yy and b/a(close to circularhole)usually decreases b0 of KI and benefits to the layout of stop-holes.The surface compressive stresses applied onto elliptical-hole(n)and crack(p)have significant influence on interacting SIFs but almost no on b0.Increasing n and p usually results in increase of interacting SIFs and facilitates crack propagation and fracture networks.The elliptical-hole orientation angle(a)and holed-cracked distance(t)have great influence on the interacting SIFs while have little effect on b0.The present method is not only simple(without any singular parts),high-accurate(due to exact fundamental stress solutions)and wider applicable(under far-field stresses and arbitrarily distributed surface stress)than the common methods,but also has the potential for the anisotropic problem involving multiple holes and cracks. 展开更多
关键词 Interacting stress intensity factors multiple elliptical-holes and cracks far-field stresses arbitrary surface stresses integral equation method
原文传递
DYNAMIC BEHAVIOR OF SEVERAL CRACKS IN FUNCTIONALLY GRADED STRIP SUBJECTED TO ANTI-PLANE TIME-HARMONIC CONCENTRATED LOADS
16
作者 Mojtaba Ayatollahi Rasul Bagheri 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第6期691-705,共15页
This paper contains a theoretical formulations and solutions of multiple cracks sub- jected to an anti-plane time-harmonic point load in a functionally graded strip. The distributed dislocation technique is used to co... This paper contains a theoretical formulations and solutions of multiple cracks sub- jected to an anti-plane time-harmonic point load in a functionally graded strip. The distributed dislocation technique is used to construct integral equations for a functionally graded material strip weakened by several cracks under anti-plane time-harmonic load. These equations are of Cauchy singular type at the location of dislocation, which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to evaluate the stress intensity factor and strain energy density factors (SEDFs) for multiple cracks with differ- ent configurations. Numerical calculations are presented to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded strip with multiple curved cracks. 展开更多
关键词 ANTI-PLANE functionally graded strip multiple cracks screw dislocation
原文传递
Effect of edge cracks on critical current degradation in REBCO tapes under tensile stress
17
作者 Zhirong Yang Yi Li +3 位作者 Peng Song Mingzhi Guan Feng Feng Timing Qu 《Superconductivity》 2022年第1期52-62,共11页
The slitting process for manufacturing REBa2Cu3O7δ(REBCO,RE=Rare earth)tapes of required width significantly improves the production efficiency and reduces production costs.However,edge cracks induced by the slittin... The slitting process for manufacturing REBa2Cu3O7δ(REBCO,RE=Rare earth)tapes of required width significantly improves the production efficiency and reduces production costs.However,edge cracks induced by the slitting process of wide REBCO tapes may cause premature degradation under high tensile stress in highfield magnets.Therefore,it is necessary to evaluate the effect of edge cracks of REBCO tapes on the critical current(Ic)degradation.Firstly,Ic degradation under artificial cracks was measured to validate the applicability of linear elastic fracture mechanics for the REBCO layer.The maximum circumferential stress criterion was used to derive the mixed-mode stress intensity factor of multiple oblique edge cracks.A semi-analytical model considering edge crack properties such as angleβ,spacing d,and length a,was built to evaluate the critical load and critical crack.We found that when the stress intensity factor at the crack tip is below KIC?2:3 MPa ffiffiffiffim p,edge cracks did not propagate.We examined commercial REBCO tapes manufactured by two different processes,concluding that edge cracks in these tapes will not cause premature degradation. 展开更多
关键词 REBCO DEGRADATION Stress intensity factor multiple oblique edge cracks Fracture toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部