Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three t...Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.展开更多
A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave...A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.展开更多
Synaptic dysfunction occurs early in Alzheimer's disease (AD) and is acknowledged as a primary pathologic target for treatment. Synaptic degeneration is the pathological feature most strongly correlated with loss o...Synaptic dysfunction occurs early in Alzheimer's disease (AD) and is acknowledged as a primary pathologic target for treatment. Synaptic degeneration is the pathological feature most strongly correlated with loss of cognitive function ante mortern (Terry et al., 1991). Synapses are heavily damaged in hippocampal and neocortical regions of AD brain, whereas motor and occipital cortices are relatively spared (Honer et al., 1992). Despite extensive work, the molecular mechanisms underlying synaptic degeneration are largely unknown.展开更多
Mycotoxins are secondary metabolites produced by fungus.Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs.So,powerful detection methods are vital and effective ways to prevent ...Mycotoxins are secondary metabolites produced by fungus.Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs.So,powerful detection methods are vital and effective ways to prevent feed contamination.Traditional detection methods can no longer meet the needs of massive,real-time,simple,and fast mycotoxin monitoring.Rapid detection methods based on advanced material and sensor technology are the future trend.In this review,we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods,especially for simultaneous multiplex mycotoxin determination.Immunoassays,biosensors,and the prominent roles of nanomaterials are introduced.The principles of different types of recognition and signal transduction are explained,and the merits and pitfalls of these methods are compared.Furthermore,limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.展开更多
In this study,a fluorescent(FL)aptasensor was developed for on-site detection of live Salmonella typhimurium(S.T.)and Vibrio parahaemolyticus(V.P.).Complementary DNA(cDNA)of aptamer(Apt)-functionalized multicolor poly...In this study,a fluorescent(FL)aptasensor was developed for on-site detection of live Salmonella typhimurium(S.T.)and Vibrio parahaemolyticus(V.P.).Complementary DNA(cDNA)of aptamer(Apt)-functionalized multicolor polyhedral oligomeric silsesquioxane-perovskite quantum dots(cDNA-POSSPQDs)were used as encoded probes and combined with dual-stirring-bar-assisted signal amplification for pathogen quantification.In this system,bar 1 was labeled with the S.T.and V.P.Apts,and then bar 2 was functionalized with cDNA-POSS-PQDs.When S.T.and V.P.were introduced,pathogen-Apt complexes would form and be released into the supernatant from bar 1.Under agitation,the two complexes reached bar 2 and subsequently reacted with cDNA-POSS-PQDs,which were immobilized on MXene.Then,the encoded probes would be detached from bar 2 to generate FL signals in the supernatant.Notably,the pathogens can resume their free state and initiate next cycle.They swim between the two bars,and the FL signals can be gradually enhanced to maximum after several cycles.The FL signals from released encoded probes can be used to detect the analytes.In particular,live pathogens can be distinguished from dead ones by using an assay.The detection limits and linear range for S.T.and V.P.were 30 and 10 CFU/mL and 10^(2) -10^(6) CFU/mL,respectively.Therefore,this assay has broad application potential for simultaneous on-site detection of various live pathogenic bacteria in water.展开更多
We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are dis...We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are discussed,followed by the derivation of the attenuation and phase-shift geometrical factors to illustrate the relative contributions of formation units to the observed signals.Then,a new definition of detection depth,which considers the uncertainty of inversion results caused by the data noise,is proposed to quantify the detection capability of ED ARM.Finally,the B ayesian theory associated with Markov chain Monte Carlo sampling is introduced for fast processing of EDARM data.Numerical results show that ED ARM is capable of detecting the azimuth and distance of remote bed boundaries,and the detection capability increases with increasing spacing and resistivity contrast.The EDARM tool can accommodate a large range of formation resistivity and is able to provide the resistivity anisotropy at arbitrary relative dipping angles.In addition,multiple bed boundaries and reservoir images near the borehole are readily obtained by using the Bayesian inversion.展开更多
Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) ...Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.展开更多
Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-bas...Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-based residual generator in its core gives a more general form of the previous works.Its applications to residual centred modelling of uncertain control systems,fault detection in feedback control systems with uncertainties,fault-tolerant control(FTC)as well as control performance degradation monitoring,detection and recovery are introduced.In conclusion,some future perspectives are proposed.展开更多
In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compres...In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compression, the speed and the storage of the system are greatly increased. We have used the powerful Fringe-adjusted joint transform correlation technique to successfully detect compression-based multiple targets in colored images. The colored image is decomposed into three fundamental color components images (Red, Green, Blue) and they are separately processed by three-channel correlators. The outputs of the three channels are then combined into a single correlation output. To eliminate the false alarms and zero-order terms due to multiple desired and undesired targets in a scene, we have used the reference shifted phase-encoded and the reference phase-encoded techniques. The performance of the proposed compression-based technique is assessed through many computer simulation tests for images polluted by strong additive Gaussian and Salt & Pepper noises as well as reference occluded images. The robustness of the scheme is demonstrated for severely compressed images (up to 94% ratio), strong noise densities (up to 0.5), and large reference occlusion images (up to 75%).展开更多
Developing fluorescence probes with multiple responses has vital significance but remains challenging.Herein,for the first time,we present a mitochondrial DNA(mtDNA)-triggered pH response signalamplified fluorescent p...Developing fluorescence probes with multiple responses has vital significance but remains challenging.Herein,for the first time,we present a mitochondrial DNA(mtDNA)-triggered pH response signalamplified fluorescent probe(QCY-DBT)for multiple cell detection.The probe exhibited a large stokes shift(229 nm),excellent DNA selectivity over RNA,and ultrasensitivity of detection limit(DL;74.0 ng/mL).Thus,QCY-DBT was successfully applied to analyze multiple human peripheral blood cells and visualize mtDNA in healthy and apoptotic cells.In the tumor acidic environment(pH 6.0–7.0),the absorbance of QCY-DBT at 436 nm increased,and the fluorescence signal(665 nm)was amplified by mtDNA,which enabled the direct observation of tumor cells.Our study provides help in designing smart probes with multiple responses for efficient abnormal cell detection.展开更多
A novel disposable paper-based bipolar electrode (BPE) array is fabricated for multiplexed electrochemiluminescence (ECL) detection of pathogenic DNAs. This proposed BPE array device consists of 15 units, each con...A novel disposable paper-based bipolar electrode (BPE) array is fabricated for multiplexed electrochemiluminescence (ECL) detection of pathogenic DNAs. This proposed BPE array device consists of 15 units, each consisting of six sensing cells and two reporting cells patterned using hydrophobic wax. A hairpin structure DNA assembled on the cathodes of BPEs hybridizes with Pt nanoparticles (NPs) labeled probe DNA in the presence of complementary target DNA. The introduction of Pt NPs catalyzes the reduction of dissolved 02 at cathodes and induces an enhanced ECL signal from Ru(bpy)32+/tripropylamine (TPrA) at the anodes of BPEs. The dissolved 02 lost in reduction reaction could be promptly replenished due to the relatively large contact area of the paper-based cells with air, which ensures the stability of ECL signal. This obtained paper-based BPE array sensor showed excellent performances for the multiplexed analysis of the syphilis (Treponema pallidum) gene, the immunodeficiency virus gene (HIV) and hepatitis B virus gene (HBV).展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detec...Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detection with relatively low complexity. However, an error floor occurs if the algorithm is applied over rapid-fading channels. Based on the assumption of continuous fading, a multiple symbol differential automatic sphere decoding (MSDASD) algorithm is developed by incorporating a recursive form of an ML metric into automatic SD (ASD) algorithm. Furthermore, two algorithms, termed as MSD approximate ASD (MSDAASD) and MSD pruning ASD (MSDPASD), are proposed to reduce computational complexity and the number of comparisons, respectively. Compared with the existing typical algorithms, i.e., multiple symbol differential feedback detection (MS-DFD) and noncoherent sequence detection (NSD), the performance of the proposed algorithms is much superior to that of MS-DFD and a little inferior to that of NSD, while the complexity is lower than that of MS-DFD in most cases and significantly lower than that of NSD.展开更多
Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and ra...Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and rapid performance simultaneously.Thus,multiple mutation detection processes are necessary,which results in long processing times and high costs.In this study,we developed a thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection(TTI-CS).This strategy is based on the DNA probe,which changes the thermodynamic balance of the DNA cascade by the designed bubble structure,thereby achieving a good distinction between mutant and wild-type DNA.The designed method greatly shortens the detection time through two-way intrusion.In addition,this method only changes two inexpensive trigger and bridge sequences,which replace the specific and expensive nucleic acid probes used in analyses based on traditional DNA probe methods,thereby enabling multiple detections.We performed the detection of synthetic single-stranded DNA for the five mutation points and successfully detected in endometrial cancer specimens.The detection limit of this method is0.1%,which better meets the needs of clinical low-abundance multiple mutation detection.Overall,TTI-CS is currently one of the best methods for detecting multiple mutation detections.展开更多
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on ...Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.展开更多
In this paper,a novel multi-frame track-before-detect algorithm is proposed,which is based on root label clustering to reduce the high computational complexity arising by observation area expansion and clutter/noise d...In this paper,a novel multi-frame track-before-detect algorithm is proposed,which is based on root label clustering to reduce the high computational complexity arising by observation area expansion and clutter/noise density increase.A criterion of track extrapolation is used to construct state transition set,root label is marked by state transition set to obtain the distribution information of multiple targets in measurement space,then measurement plots of multi-frame are divided into several clusters,and finally multi-frame track-before-detect algorithm is implemented in each cluster.The computational complexity can be reduced by employing the proposed algorithm.Simulation results show that the proposed algorithm can accurately detect multiple targets in close proximity and reduce the number of false tracks.展开更多
A dual-readout sensing platform based on two signal transduction channels can integrate the unique advantages of each sensing pattern,compensate for the deficiency in the adaptive capacity,and enable a more convincing...A dual-readout sensing platform based on two signal transduction channels can integrate the unique advantages of each sensing pattern,compensate for the deficiency in the adaptive capacity,and enable a more convincing performance in analytical applications.Here,we introduce a responsive molecule dye,xylenol orange(XO),to combine with lanthanide terbium ions(Tb^(3+)).The resultant Tb^(3+)-XO complex exhibited tunable optical properties and was used as a novel colorimetric and luminometric dual-readout sensing platform for assaying the anthrax biomarker,dipicolinic acid(DPA).In the presence of Tb^(3+),the XO solution underwent a color change from yellow to magenta;however,upon adding DPA,the color changed back to yellow immediately,accompanied by the characteristic luminescence emission of Tb^(3+).Considering the strong affinity between DPA/XO and metal ions,the proposed sensing platform was further employed for the determination and differentiation of certain metal ions using linear discriminant analysis.This convenient dual-readout sensing platform offers several notable features and significantly promotes the application and development of lanthanide-based materials.展开更多
Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential...Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential and challenging task.In the previous studies,many vehicle detection methods have been presented.These proposed approaches mostly used either motion information or characteristic information to detect vehicles.Although these methods are effective in detecting vehicles,their detection accuracy still needs to be improved.Moreover,the headlights and windshields,which are used as the vehicle features for detection in these methods,are easily obscured in some traffic conditions.The paper aims to discuss these issues.Design/methodology/approach-First,each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model.Next,the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks.These feature blocks will be used to track the moving objects frame by frame.Findings-Using the proposed method,it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement(waving trees),which has to be deemed as background.In addition,the proposed method is able to deal with different vehicle shapes such as cars,vans,and motorcycles.Originality/value-This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.展开更多
Diarrhea,as a global public health problem,causes a large number of infections and deaths every year.Although Escherichia coli(E.coli)is one of the normal flo ra microorganisms in the human intestinal tract,it has fiv...Diarrhea,as a global public health problem,causes a large number of infections and deaths every year.Although Escherichia coli(E.coli)is one of the normal flo ra microorganisms in the human intestinal tract,it has five pathogenic bacteria types that can cause human diarrhea,known as diarrheagenic E.coli.When people are infected,rapid and accurate diagnosis,along with timely treatment,are especially important.Here,we introduce a new method to identify and analyze a large number of pathogenic strains in E.coli by multiplex PCR and barcoded magnetic bead hybridization.Results show that the detection sensitivities of enterohemorrhagic E.coli,enterotoxigenic E.coli,enteropathogenic E.coli,enteroinvasive E.coli and enteroaggregative E.coli were 1.3×10^3 CFU/mL,2×10^4 CFU/mL,4×10^4 CFU/mL,7.2×10^4 CFU/mL and 1.7 CFU/mL respectively.This method has strong specificity and high sensitivity and detects multiple target sequences in one experiment.Compared with other methods,BMB array has great application potential.展开更多
基金funded by the National Key R&D Program of China[2021YFC2301102]National Natural Science Foundation of China[82202593]Key R&D Program of Hebei Province[223777100D].
文摘Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
文摘A credible method of calculating the detection threshold is presented for the multiple target situations, which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.
基金Financial support was provided by the Alzheimer’s Australia Dementia Research Foundation Scholarship Program(AAR Postgraduate Research Scholarship),Alzheimer’s Association(USA)under grant#RG1-96-005the Judith Jane Mason and Harold Stannett Williams Memorial Foundation+1 种基金The Queensland Brain Bank,part of Australian Brain Bank Networksupported by an NHMRC(Australia)Enabling Grant No.605210
文摘Synaptic dysfunction occurs early in Alzheimer's disease (AD) and is acknowledged as a primary pathologic target for treatment. Synaptic degeneration is the pathological feature most strongly correlated with loss of cognitive function ante mortern (Terry et al., 1991). Synapses are heavily damaged in hippocampal and neocortical regions of AD brain, whereas motor and occipital cortices are relatively spared (Honer et al., 1992). Despite extensive work, the molecular mechanisms underlying synaptic degeneration are largely unknown.
基金The financial support from the National Key Research and Development Program of China(2017YFC1600300).
文摘Mycotoxins are secondary metabolites produced by fungus.Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs.So,powerful detection methods are vital and effective ways to prevent feed contamination.Traditional detection methods can no longer meet the needs of massive,real-time,simple,and fast mycotoxin monitoring.Rapid detection methods based on advanced material and sensor technology are the future trend.In this review,we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods,especially for simultaneous multiplex mycotoxin determination.Immunoassays,biosensors,and the prominent roles of nanomaterials are introduced.The principles of different types of recognition and signal transduction are explained,and the merits and pitfalls of these methods are compared.Furthermore,limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.:21974074)Ningbo Public Welfare Technology Plan Project of China(Grant Nos.:2021Z056,2022Z170,2022S011,and 202002N3112)+2 种基金Zhejiang Provincial Top Discipline of Biological Engineering(Level A)(Grant Nos.:CX2021051 and KF2021004)Zhejiang Province Public Welfare Technology Application Research Analysis Test Plan(Grant No.:LGC20B 050006)K.C.Wong Magna Fund in Ningbo University.
文摘In this study,a fluorescent(FL)aptasensor was developed for on-site detection of live Salmonella typhimurium(S.T.)and Vibrio parahaemolyticus(V.P.).Complementary DNA(cDNA)of aptamer(Apt)-functionalized multicolor polyhedral oligomeric silsesquioxane-perovskite quantum dots(cDNA-POSSPQDs)were used as encoded probes and combined with dual-stirring-bar-assisted signal amplification for pathogen quantification.In this system,bar 1 was labeled with the S.T.and V.P.Apts,and then bar 2 was functionalized with cDNA-POSS-PQDs.When S.T.and V.P.were introduced,pathogen-Apt complexes would form and be released into the supernatant from bar 1.Under agitation,the two complexes reached bar 2 and subsequently reacted with cDNA-POSS-PQDs,which were immobilized on MXene.Then,the encoded probes would be detached from bar 2 to generate FL signals in the supernatant.Notably,the pathogens can resume their free state and initiate next cycle.They swim between the two bars,and the FL signals can be gradually enhanced to maximum after several cycles.The FL signals from released encoded probes can be used to detect the analytes.In particular,live pathogens can be distinguished from dead ones by using an assay.The detection limits and linear range for S.T.and V.P.were 30 and 10 CFU/mL and 10^(2) -10^(6) CFU/mL,respectively.Therefore,this assay has broad application potential for simultaneous on-site detection of various live pathogenic bacteria in water.
基金co-funded by Chinese Postdoctoral Science Foundation(2018M640663)the National Natural Science Foundation of China(41474100,41574118,41674131)National Science and Technology Major Project of the Ministry of Science and Technology of China(2017ZX05009-001)
文摘We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are discussed,followed by the derivation of the attenuation and phase-shift geometrical factors to illustrate the relative contributions of formation units to the observed signals.Then,a new definition of detection depth,which considers the uncertainty of inversion results caused by the data noise,is proposed to quantify the detection capability of ED ARM.Finally,the B ayesian theory associated with Markov chain Monte Carlo sampling is introduced for fast processing of EDARM data.Numerical results show that ED ARM is capable of detecting the azimuth and distance of remote bed boundaries,and the detection capability increases with increasing spacing and resistivity contrast.The EDARM tool can accommodate a large range of formation resistivity and is able to provide the resistivity anisotropy at arbitrary relative dipping angles.In addition,multiple bed boundaries and reservoir images near the borehole are readily obtained by using the Bayesian inversion.
文摘Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.
基金This work was supported by the National Natural Science Foundation of China(62020106003,62073029)the Beijing Natural Science Foundation(4202045)the Fundamental Research Funds for the Central Universities(FRF-TP-20-012A3).
文摘Initiated three decades ago,integrated design of controllers and fault detectors has continuously attracted research attention.The recent development of the unified control and detection framework with an observer-based residual generator in its core gives a more general form of the previous works.Its applications to residual centred modelling of uncertain control systems,fault detection in feedback control systems with uncertainties,fault-tolerant control(FTC)as well as control performance degradation monitoring,detection and recovery are introduced.In conclusion,some future perspectives are proposed.
文摘In this paper, we are proposing a compression-based multiple color target detection for practical near real-time optical pattern recognition applications. By reducing the size of the color images to its utmost compression, the speed and the storage of the system are greatly increased. We have used the powerful Fringe-adjusted joint transform correlation technique to successfully detect compression-based multiple targets in colored images. The colored image is decomposed into three fundamental color components images (Red, Green, Blue) and they are separately processed by three-channel correlators. The outputs of the three channels are then combined into a single correlation output. To eliminate the false alarms and zero-order terms due to multiple desired and undesired targets in a scene, we have used the reference shifted phase-encoded and the reference phase-encoded techniques. The performance of the proposed compression-based technique is assessed through many computer simulation tests for images polluted by strong additive Gaussian and Salt & Pepper noises as well as reference occluded images. The robustness of the scheme is demonstrated for severely compressed images (up to 94% ratio), strong noise densities (up to 0.5), and large reference occlusion images (up to 75%).
基金financially supported by the National Key Research and Development Plan(No.2018AAA0100301)National Science Foundation of China(No.21925802)+1 种基金Research Funds for the Central Universities(No.DUT22LAB601)the Basic Research Project of Free Exploration(No.2021Szvup019)。
文摘Developing fluorescence probes with multiple responses has vital significance but remains challenging.Herein,for the first time,we present a mitochondrial DNA(mtDNA)-triggered pH response signalamplified fluorescent probe(QCY-DBT)for multiple cell detection.The probe exhibited a large stokes shift(229 nm),excellent DNA selectivity over RNA,and ultrasensitivity of detection limit(DL;74.0 ng/mL).Thus,QCY-DBT was successfully applied to analyze multiple human peripheral blood cells and visualize mtDNA in healthy and apoptotic cells.In the tumor acidic environment(pH 6.0–7.0),the absorbance of QCY-DBT at 436 nm increased,and the fluorescence signal(665 nm)was amplified by mtDNA,which enabled the direct observation of tumor cells.Our study provides help in designing smart probes with multiple responses for efficient abnormal cell detection.
基金supported by the National Basic Research Program of China(2012CB932600)the National Natural Science Foundation of China(21327902,21475058,21121091)
文摘A novel disposable paper-based bipolar electrode (BPE) array is fabricated for multiplexed electrochemiluminescence (ECL) detection of pathogenic DNAs. This proposed BPE array device consists of 15 units, each consisting of six sensing cells and two reporting cells patterned using hydrophobic wax. A hairpin structure DNA assembled on the cathodes of BPEs hybridizes with Pt nanoparticles (NPs) labeled probe DNA in the presence of complementary target DNA. The introduction of Pt NPs catalyzes the reduction of dissolved 02 at cathodes and induces an enhanced ECL signal from Ru(bpy)32+/tripropylamine (TPrA) at the anodes of BPEs. The dissolved 02 lost in reduction reaction could be promptly replenished due to the relatively large contact area of the paper-based cells with air, which ensures the stability of ECL signal. This obtained paper-based BPE array sensor showed excellent performances for the multiplexed analysis of the syphilis (Treponema pallidum) gene, the immunodeficiency virus gene (HIV) and hepatitis B virus gene (HBV).
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金Supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB320403)the National Defense Pre-researchProject of the 11th Five-Year-Plan of China (Grant No. 1060741001020102)
文摘Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detection with relatively low complexity. However, an error floor occurs if the algorithm is applied over rapid-fading channels. Based on the assumption of continuous fading, a multiple symbol differential automatic sphere decoding (MSDASD) algorithm is developed by incorporating a recursive form of an ML metric into automatic SD (ASD) algorithm. Furthermore, two algorithms, termed as MSD approximate ASD (MSDAASD) and MSD pruning ASD (MSDPASD), are proposed to reduce computational complexity and the number of comparisons, respectively. Compared with the existing typical algorithms, i.e., multiple symbol differential feedback detection (MS-DFD) and noncoherent sequence detection (NSD), the performance of the proposed algorithms is much superior to that of MS-DFD and a little inferior to that of NSD, while the complexity is lower than that of MS-DFD in most cases and significantly lower than that of NSD.
基金supported by the Science and Technology Innovation Project of Hubei Province(No.2019ACA138)the National Natural Science Foundation of China(Nos.81871732 and 81974409)。
文摘Detection of point mutations in driver genes is of great significance for the early diagnosis,treatment,and prognostic evaluation of cancer.However,current detection methods do not offer versatility,specificity,and rapid performance simultaneously.Thus,multiple mutation detection processes are necessary,which results in long processing times and high costs.In this study,we developed a thermodynamics-guided two-way interlocking DNA cascade system for universal multiplexed mutation detection(TTI-CS).This strategy is based on the DNA probe,which changes the thermodynamic balance of the DNA cascade by the designed bubble structure,thereby achieving a good distinction between mutant and wild-type DNA.The designed method greatly shortens the detection time through two-way intrusion.In addition,this method only changes two inexpensive trigger and bridge sequences,which replace the specific and expensive nucleic acid probes used in analyses based on traditional DNA probe methods,thereby enabling multiple detections.We performed the detection of synthetic single-stranded DNA for the five mutation points and successfully detected in endometrial cancer specimens.The detection limit of this method is0.1%,which better meets the needs of clinical low-abundance multiple mutation detection.Overall,TTI-CS is currently one of the best methods for detecting multiple mutation detections.
基金supported by the National Natural Science Foundation of China(Nos.11534006,11674184,and11374166)the Natural Science Foundation of Tianjin(Nos.16JCZDJC31300 and 13JCZDJC33800)+1 种基金the 111 Project(No.B07013)the Collaborative Innovation Center of Extreme Optics
文摘Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.
基金supported by the Innovation Project of Science and Technology Commission of the Central Military Commission,China(No.19-HXXX-01-ZD-006-XXX-XX)。
文摘In this paper,a novel multi-frame track-before-detect algorithm is proposed,which is based on root label clustering to reduce the high computational complexity arising by observation area expansion and clutter/noise density increase.A criterion of track extrapolation is used to construct state transition set,root label is marked by state transition set to obtain the distribution information of multiple targets in measurement space,then measurement plots of multi-frame are divided into several clusters,and finally multi-frame track-before-detect algorithm is implemented in each cluster.The computational complexity can be reduced by employing the proposed algorithm.Simulation results show that the proposed algorithm can accurately detect multiple targets in close proximity and reduce the number of false tracks.
基金funded by the National Natural Science Foundation of China(No.21804083)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018258)。
文摘A dual-readout sensing platform based on two signal transduction channels can integrate the unique advantages of each sensing pattern,compensate for the deficiency in the adaptive capacity,and enable a more convincing performance in analytical applications.Here,we introduce a responsive molecule dye,xylenol orange(XO),to combine with lanthanide terbium ions(Tb^(3+)).The resultant Tb^(3+)-XO complex exhibited tunable optical properties and was used as a novel colorimetric and luminometric dual-readout sensing platform for assaying the anthrax biomarker,dipicolinic acid(DPA).In the presence of Tb^(3+),the XO solution underwent a color change from yellow to magenta;however,upon adding DPA,the color changed back to yellow immediately,accompanied by the characteristic luminescence emission of Tb^(3+).Considering the strong affinity between DPA/XO and metal ions,the proposed sensing platform was further employed for the determination and differentiation of certain metal ions using linear discriminant analysis.This convenient dual-readout sensing platform offers several notable features and significantly promotes the application and development of lanthanide-based materials.
文摘Purpose-Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking.Especially in a traffic video monitoring system,vehicle detection is an essential and challenging task.In the previous studies,many vehicle detection methods have been presented.These proposed approaches mostly used either motion information or characteristic information to detect vehicles.Although these methods are effective in detecting vehicles,their detection accuracy still needs to be improved.Moreover,the headlights and windshields,which are used as the vehicle features for detection in these methods,are easily obscured in some traffic conditions.The paper aims to discuss these issues.Design/methodology/approach-First,each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model.Next,the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks.These feature blocks will be used to track the moving objects frame by frame.Findings-Using the proposed method,it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement(waving trees),which has to be deemed as background.In addition,the proposed method is able to deal with different vehicle shapes such as cars,vans,and motorcycles.Originality/value-This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.
基金the National Natural Science Foundation of China(Nos.61971187,61571187,61871180)Education Department Outstanding Young Project of Hunan Province(No.18B299)。
文摘Diarrhea,as a global public health problem,causes a large number of infections and deaths every year.Although Escherichia coli(E.coli)is one of the normal flo ra microorganisms in the human intestinal tract,it has five pathogenic bacteria types that can cause human diarrhea,known as diarrheagenic E.coli.When people are infected,rapid and accurate diagnosis,along with timely treatment,are especially important.Here,we introduce a new method to identify and analyze a large number of pathogenic strains in E.coli by multiplex PCR and barcoded magnetic bead hybridization.Results show that the detection sensitivities of enterohemorrhagic E.coli,enterotoxigenic E.coli,enteropathogenic E.coli,enteroinvasive E.coli and enteroaggregative E.coli were 1.3×10^3 CFU/mL,2×10^4 CFU/mL,4×10^4 CFU/mL,7.2×10^4 CFU/mL and 1.7 CFU/mL respectively.This method has strong specificity and high sensitivity and detects multiple target sequences in one experiment.Compared with other methods,BMB array has great application potential.