The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est...The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.展开更多
A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fu...A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fundamental solutions are advantageous in treating flows past an arbitrary number of arbitrarily positioned and oriented oblate spheroids. The least squares technique was adopted herein so that the convergence difficulties often encountered in solving three-dimensional problems were completely avoided. The examples demonstrate that present approach is highly accurate, consistently stable and computationally efficient. The oblate spheroid may be used to model a variety of particle shapes between a circular disk and a sphere. For the first time, the effect of various geometric factors on the forces and torques exerted on two oblate spheroids were systematically studied by using the proposed fundamental solutions. The generality of this approach was illustrated by two problems of three spheroids.展开更多
基金the Science Foundation of the Science and Technology Commission of Shanghai Municipality(No.075105118)the Shanghai Leading Academic Discipline Project(No.T0401)the Fund for E-institute of Shanghai Universities(No.E03004)
文摘The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.
文摘A new three-dimensional fundamental solution to the Stokes flow was proposed by transforming the solid harmonic functions in Lamb's solution into expressions in terms Of the oblate spheroidal coordinates. These fundamental solutions are advantageous in treating flows past an arbitrary number of arbitrarily positioned and oriented oblate spheroids. The least squares technique was adopted herein so that the convergence difficulties often encountered in solving three-dimensional problems were completely avoided. The examples demonstrate that present approach is highly accurate, consistently stable and computationally efficient. The oblate spheroid may be used to model a variety of particle shapes between a circular disk and a sphere. For the first time, the effect of various geometric factors on the forces and torques exerted on two oblate spheroids were systematically studied by using the proposed fundamental solutions. The generality of this approach was illustrated by two problems of three spheroids.